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Abstract The paper considers the algorithms of
balanced realization from SISO transfer functions. Some
methods which have been proposed to find a balanced re-
alization from the compauion form realization, are inves-
tigated. Then a new method is proposed which finds a
balanced realization from the discrete Schwarz form real-
ization. The process of computing the elements of Schwarz
matrix from the transfer function is equivalent to the
Schur-Cohn stability test procedure. Comparison of the
proposed method with the previous works is also discussed.

1 Introduction

Balanced realizations are characterized by having equal
and diagonal controllability and observability Gramians
with the relative size of each diagonal entry being an indi-
cation of the importance of the correspording state to the
input-output behavior. Balanced realizations have been
under investigation in connection with model reduction
problems.

Recently, some algorithias of balanced realization from
an SISO transfer function have been proposed, which re-
quire Cholesky decomposition of the solution of Lyapunov
equation(Young 1985). All the algorithms proposed in
the literature so far can be considered as the methods
which find the transformation matrix of balanced realiza-
tion from the companion form realization such as the ob-
servability canonical form. The main numerical steps are
the evaluation of a polynomial in a companion matrix, a
Cholesky decomposition and a singular-value decomposi-
tion.

In this paper, a new algorithm is proposed which finds
transformation matrix of the balanced realization from the
discrete Schwarz form realization. The process of com-
puting the elements of Schwarz matrix from the transfer
function is equivalent to the Schur-Cohn stability test pro-
cedure. It is found that the method proposed by Ther-
apos(1985) also involves the variables which appear in
the computing process. The comparison of our proposed
method with that of Therapos is also carried out, focusing
on the meanings of the various variables which appear in
the both algorithms.

Section 2 gives a briefview on the balanced realization.
In Section 3, the method of Young(1985) which require
Cholesky decomposition of the solution of Lyapunov equa-
tion is described. The discrete Schwarz matrix form is ex-
plained in Section 4. Section 5 describes the algorithms
of Therapos(1985) based on the Bezout matrix. Then a
new algorithm based on the Schwarz form realization is
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proposed in Section 6. This section is the major point in
the paper. Finally in section 7, the relation between these
algorithms is discussed.

2 A briefview on the balanced re-
alization

Consider a discrete single-input single-output (SISO) sys-
tem, described by its transfer function

b(z)  @(z)
G = — = = 1
(2) o)~ Wa) (1)
where the polynomials a(z),b(2) are
a(z) = 2"4+az2* 4 tag 124 an (2)
b(2) = by" 4. by y2+b, 3)

and d(2) = 2"a(z7"),b(z) = 2"b(z71).

Assume that transfer function G(z) is stable and has
ne pole-zero cancellations. If a realization of the transfer
function G(z) is described by (4, b, c7), then the solutions
X,Y of the Lyapunov equations

X - AXAT =bb” (4)

(5)

are called the controllability gramian and the obsgervability
gramian of (4, b, cT), respectively.

Based on the assumptions stated above,X,Y are both
symmetric positive-definite matrices. Let the other re-
alization of G(z) is (4,b,&7), then A = TAT1,b =
Tb,&" = cT-!. The relations between X,¥ and X,Y
are

Y -ATYA=ccT

X =TXT ¥ =7"TYyT! (6)

Choose a transformation matrix T making X =V = %
be diagonal matrices, then the corresponding realization
(A, b, &) of G(z) is called the balanced realization.

3 Young’s method

For a given rational function G(z), analytic outside the
closed unit disc and satisfying G(co) = 0, this method is



proposed for the realization of G(z) by a discrete linear sys-
tem which is balanced(i.e. its controllability and observ-
ability gramians are equal and diagonal). The main nu-
merical steps are the evaluation of a polynomial in a com-
panion matrix, a Cholesky decomposition and & singular-
value decomposition.

Let a companion matrix of polynomial a(z) is C, then

0 1
0 0 0
C=1 . : (M
0 0 0 1
—Gn —Gn-) Y

Let the i rows of identity matrix be e; and let the vector
h = [by,by,...,b,}T. Let the matrix of H and I be

o

0 o 01
1 0 ~ 1

H = . ) I = (8)
o) 10 1 0

respectively. Then a realization of transfer function G(2) is
(CT, Ih,el), the transformation matrix R can be defined
by the next algorithm.

i) Form
D =@(H) 'a(H)

ii) Use the Cholesky decomposition:
I-DDT =T-'= LT

iii) Perform the singular-value decomposition:
LTf(CTLT = €207

iv) Set the transformation matrix
R = a(H)L,£5%

v) Obtain the balanced realization:

A=RICTR
b=ZinTLTe; =R 'Ih

T =elR

where f(C) is defined by
F(C) =a(C)(C) = b(C)a(C) . (9)
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4 Discrete Schwarz matrix

Consider a certain matrix associated with a prescribed
polynomial (real or complex) which has come to be known
as the Schwarz matrix(1984). This matrix contains in-
formation about the root distribution of the polynomial,
relative to the unit circle, i.e. on occasions, the matrix
indicates the number of zeros of the polynomial in the re-
gion |s] < 1 for example.

From the coefficient a; of the polynomials a(z), the ¢;
can be calculated by the next recursive relations

Gin=0,1=12...,n A=1

¢m = O0mm
(1 - ¢12-n)ax',m—l = Qim — ¢mam—i,m (10)
(1= -1 = A

m n,n—1,...,1

T =

1,2,...,m—-1.

By use of ¢;, Schwarz matrix ® of a(z) is defined such that

"'¢n—l¢n 1- 3_1 0 0
"'¢n—-2¢n _¢n—2¢n—l 1- ¢?|—2 0
%= : : : ¢ ay
—$1Pn  —1Pn-1 —P10n-2 1-¢%
_¢n _¢n—l _d’n—-i’ _¢1
Let
A = diag(Ao, A1, .. -5 An), (12)
1
a1,1 1 (o]
W= @21 a1,2 (13)
: : 1
Gn-1;n—1 Gn-2,-1 © -1 1
then the matrix & can be expressed as
®=Wcw, (14)

where W = IWI. This shows that the companion matrix
C and the discrete Schwarz matrix are similar.

5 Therapos’ method

The Bezout matrix B(a, b) associated with the polynomi-
als a(z) and b(z) is defined as

B(a,b) = Ta(H)b(C) = I[a(H)b(HT)-b(H)a(HT)].(15)

The polynomials a(z) and b(z) have no zeros in common
if and only the associated Bezout matrix B{a,b) is non-
singular. By making use of the Bezout matrix B(a,b) and
matrices A, W, Therapos proposed a method which con-
structs the transformation matrix T of balanced realiza-
tion from the realization (C, e, hTT):



i) Form
M=N"'WI (N=A)
ii) Compute Bezout matrix B(a,b).
ili) Use matrix B(a,b) to form
0-TB(e,0)[I! = IVOSVT]
iv) Set the transformation matrix:
TT = RNIW-TI (T = IW-'INTRT)
v) Obtain the balanced realization:

A=T"CT
b=T"e,
&7 = h?iT

where matrix © is diagonal matrix made of +1 or—1,
called sign matrix. .

6 The realization algorithms
based on ¢
Define a matrix M as
M = G(C)W AL, (16)

Let g = @(H)"'h, then (C,g,e]) is a realization of G(z).
Let the controllability matrix and the observability matrix
of this realization be I' andP, respectively, which are the
solutions of the Lyapunov equations:

I -CTTC = e;eT 17
P —-CPCT =gg” (18)

Then I’ and P have the closed-form expression as follows:

I =(MMT)"? (19)

P=f(C)MMTf(CT) (20)
Since

£(C)=3(C)7'n(C) = b(CYa(C) ™} (21)
and MTTM = I, we have from equation (17)

I = MTCTMTM-\CM = MTe;el M (22)

and by using equation (14), we obtain

MPMT - M\CMM'PM-TMTCTM-T
= M—lgg—TMT (23)

Then the observability matrix of a realization
(M—'CM, Mg,eT MT) is identity matrix and the control-
lability matrix is

ML f(CYMMT F(CT)MT. (24)

Suppose further that M~ f(C)M has the singular value
decomposition

M7 f(CO)M =VEUT (25)
where U and V' are orthonormal matrices. Let
R=zVT. (26)
and

A=RM'CMR',b=RM'g,c" = el MR (27)

Then (A, b, &) is a balanced realization of G(z), with con-
trollability and observability matrices both equal to 2,
that is,

L-ATzA=e" (28)
£ — ADAT =bbT (29)
It can be seen from equation(27) that the matrix RM ™!

is transformationArrlatrix from the realization (C, g, e7) to
the realization (A,b,e7).

From the above discussions, the algorithms which finds
the transformation matrix S of balanced realization from
the realization (C, g,eT) can be described by

i) Form the matrix A, W
ii) Compute Bezout matrix B(a,b)
iii) Perform the singular-value decomposition:
M7 f(C)M = AsW-TIB(a,b)W'AT = VEUT
iv) Set the transformation matrix:
§ = RM~! = RAYW-TG(H)
v) Obtain the balanced realization:

A=8¢cs5
b= Sg
&7 =efs!

By using W = IWT, the matrix M can be written as
M = GH) 'a(H)aC)W A1

(30)
= GH)'WTAE,
Since
Ta(H)C = CTTa(H) (31)
it follows that
M-ICM = ATW-Ta(H)Ca(H)'WTA~1
= AY[@TIA-% (32)
= N&TN-!
where
N = AfT (33)



Since a(H)g = b, it follows that

M-lg = AW-Ta(H)g
ATW-Th (34)
NW-TTh

Let eIWT = [1v¢11 ¢27 Tty ¢n—1]7 t'hen
M = eTWTA-#
(35)
= [$n-1, o, 01, NT!

and from (27), the realization(A, b, €) can be written as
A=RN®TN-'R™!
b=RNW-TIh (36)
€T = [Buet, Pazy -, b1, UNTIR

Finally, we will describe the calculation of the matrix
M™1f(C)M. According to the equations (16),(21), we
have

FOYM = b(C)WIAS (37)

And we can obtain from (30)

M-If(C)M = ATW-Ta(H)b(C)W-1A%

= NW-TB(a,b)IW-INT %)

It is easily seen that the (i, j)-elements of B(a, b) are
[@n—i,ba-jt1] + [@n—i1, bu—jta] (39)

+- ot [Gpmik, bn—-j+k+1]
where k¥ = max(é,j) — 1 and

{a:,bj] = aibj — a;bs, ag=1,0p=0 (40)
Hence, using S = RN(IWI)TIa(H), &=WCW-!,

the method which find balanced realization from the poly-
nomials a(z), b(2) can be described by following algorithm:

i) Form A,W and &* = [®7T
ii) Compute Bezout matrix B(a,b)
iti) Perform the singular-value decomposition:
M-1f(C)M = AAW-TIB(a,b)W-1At = VZUT
iv) Set the transformation matrixT:
T = RNT = g-tvTpb
v) Obtain the balanced realization:
A=To" T
b=7wWh
=L, 0ua]T!
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7 Discussion

We have the following relations between R,T and S:

R B(a,b)T (41)

s = TTTa(H) (42)

By using Ja(H)C = CTIa(H) and B(a,b) = Ia(H)b(C)
= b(CT)Ia(H), we can get R = b(CT)S. Let H is Hankel
matrix of G(z), then H and B(a,b) have the relations

H = Ta(H)*B(a,b)a(HT)'T (43)

il

and

TTB(a,b)T = SHST = ©. _(44)

This relation implies the important properties of balanced
realizations

0A=ATe, Ob=2¢ (45)
Then it follows that
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