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ABSTRACT

The problem of fine manipulation is considered in this
paper. By fine manipulation, we mean the positioning of the
object relative to the palm as opposed to gross manipulation
by the arm. The compliance in the fingers and the object is
modeled by linear springs. It is shown that the motion of the
fingers and object can be predicted by minimizing a quadratic
objective function. A method for simulating position control
algorithms is developed.

1. Introduction

With the current state of the art in robotics, position
contro] algorithms are simpler and more robust than force
control algorithms [4-7].

The first studies of grasp stability were reported by [1].
They defined a grasp to be stable, if the object returns to the
original position after a perturbation of its position with
respect to the hand and proposed to grasp an object in such a
way that the potential energy stored in the elastic fingers
should be minimized.

[3] have considered stability to mean a situation in
which the object does not slip from the hand. They applied
numerical optimization techniques to select a three-point grasp
for a hand with three single-link fingers.

The redundancy or indeterminacy in the finger-object
system can be resolved if fingers are modeled as compliant
members. [8] developed a simple geomeuric relation between
the stiffness of the grasp and the spatial configuration of the
virtual springs at the contacts. He formulated the potential
function of the grasp as the sum of the potential functions
from all linear and angular springs. A grasp is in equilibrium
if and only if the gradient of its potential function is zero.

The variable compliance method was proposed by 6] to
resolve the static indeterminacy by using the principle of
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geometric compatibility, which is extensively used for passive
structures encountered in solid mechanics problems.

The fingers and the object were modeled as elastic
bodies and the region of contact as a deformable surface patch
[10]. The nature of the constraints arising out of conditions
for compatibility and static equilibrium motivated the
formulation of the model as a nonlinear constrained
minimization problem. He minimized the total potential
energy of the system subject to the nonlinear, equality and
inequality constraints on the system, using a successive
quadratic programming method.

In this paper, the problem then consists of analyzing the
effect of finger displacements on (a) the contact forces at the
interface (b) the position of the object. The objective is to
explore if controlled finger dispiacements will result in finger
forces that will maintain the object in equilibrium. we model
the contact compliance through linear elastic springs. we
explicitly incorporate unilateral constraints and frictional
constraints in this model. In Sections 2 and 3, the details of
the model and the formulation are presented. Section 4 deals
with a minimum principle which can be used to simulate
quasi-static systems in which friction work is zero. The
application of this principle and examples are included in
Section 5.

2. Modeling of the Finger-Object Contact

The compliance in the finger and the object is very
difficult to model. Even if principles of linear elasticity are
invoked, it is quite difficult to obtain closed form solutions
for the equivalent stiffness or the contact stresses. We will
assume that the compliance on each surface can be modeled
by a normal and a tangential spring. Further, we assume that
the displacements at the contact as well as the gross motion of
the object are small. Our analysis is quasi-static. The contacts
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Figure 2.1: Elastic Finger and Object in Two Dimensions

between the fingers and the object are modeled as point
contact with friction.

In Figure 2.1 C is assumed to be a point on a solid
rigid core which is sufficiently far away from the contact. In
other words, it is unaffected by the contact stresses at point
D. Similarly F lies on the solid part of the finger. D and E are
contact points on the body and finger respectively. Thus the
displacements at D and E represent the displacements at the
surfaces of the body and the finger respectively. The
displacements at C and F represent rigid body displacement of
the body and finger respectively. n and t are unit normal and
tangential vectors at the contact point as sh'own in the finger.
knp and kg are the normal and tangential stiffness of the body
and kprand ky are the normal and tangential stiffness of the
finger. In principle, the finger stiffness can not only model
the stiffness in the structure, and transmission and actuation
system, but also the compliance that can be generated
electronically. Therefore, this analysis is realistic for
compliance control algorithms too. ug, ug, Ue and ug are
displacements at points C, D, E and E respectively. We
restrict ourselves to planar geometries with the observation
that the nature of the problem does not change in three
dimensions.

The assumptions made in the analysis are reiterated:

1. The contact occurs at a point.

2. The friction is modeled as Coulomb friction.
3. A quasi-static analysis is adequate.

4. The displacement of the contact point is small.
5. A lumped stiffness model is valid.

6. The object and the fingers are planar.

The finger force F, which is the force at the interface
exerted on the body, is proportional to the spring

deformations:

F=an+F‘t
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where
Fn = kpp(ug-uc)en = knf(ug-ue) e n
Fi=kip(ug-uc) o t = ky(ug-ue) o t

3. Constraint Condition

The Coulomb friction constraints require that the finger
force vector lies within the friction cone for rolling contact
and that the finger force vector lies on the boundary of the
friction cone for sliding contact. Therefore

U2F,2 2F2 (for rolling contact)

(ue— upet
—(ue—ud)-tlanzFl .
(for sliding contact)

where |1 is the coefficient of friction at the point of contact.

The relative displacement at the contact, which is Ue-ug,
can be divided into normal and tangential components. That
is, the relative normal displacement ( (ue-ug)en ) and the
relative tangential displacement ( (ue-ug) e t ). The former is
constrained because the fingertip (E) cannot penetrate the
boundary of the object (D):

(ug-ug)en 2 0

If contact is sustained, the equality condition holds.
The tangential displacement is constrained depending on
the nature of the contact:
(ugug)et =0 (for rolling contact)
(ugug)et =0 (for sliding contact)

All the above contact constraints can be summarized in
the following manner:

A, Rolling Contact Case
Fn = knb(ug-uc) ® n = knf(ug-uc) e n 3.A.1)
Fi=kip(ug-uc) o t = kyr(up-ue) o t (3.A2)
(ug-ug)et=0 (3.A.3)
(ug-ug)en=0 (3.A.4)
WF, 2 Fy 2 -uF, (B.A.5)
Fp20 (3.A.6)
in n e
Fn = knb(ug-uc) ® n = kp(ug-ue) o n (3.B.1)



F = kp(ug-uc) ¢ t = ky(ug-ug) o t (3.8.2)

(ug-ug)em =0 (3.B.3)

(ug-ug)et #0 (3.B.9)
(ue— ud) ot

Tt (3.B.5)

Fn20 (3.B.6)

A unified approach to the two rolling and sliding problems
yield:

Fn = kpp(ug-uc) ® n = kpp(ug-ug) ® n (from 3.A.1 & 3.B.1)

Fi = kgp(ugug) o t = ky(upug) et (from 3.A.2 & 3.B.2)

(ue—ud)ot

- I(ue—ud)o t wFq "Fl][(ud“llc)Ot]=0

(from 3.A.3 & 3.B.5)

(ug-ug)en =0 (from 3.A4 & 3.B.3)

WF, 2 Fy 2 -uF, (from 3.A.5)

Fh20 (from 3.A.6 & 3.B.6)

4. The Minimum Potential Energy Principle

If a given force depends on the position alone, F =
F(r), and the quantity F e dr can be expressed in the form of a
perfect differential

F e dr = - dd(r)

where the function ®(r) depends only on the position vector r
and does not depend explicitly on the velocity T or the time t,
the force field is said to be conservative, and the function
@(r) is known as the potential energy.

The principle of minimum potential energy states that
the displacement which satisfies the differential equations of
equilibrium, as well as the conditions at the bounding surface,
yields a smaller value for the potential energy of deformation
than any other displacement, which satisfies the same
conditions at the bounding surface.

The potential energy stored in a finger-object system is
equal to the strain energy, which, in our model, is the
potential energy stored in the springs:
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Figure 4.1: Relationship between Finger Displacements and
Body Twist.

(ud—uc)on knb 0 0 0
U (uf—ue)-n K - 0 knfo 0

(ud—uc)tt 0 0 klb 0

(ug—ug)et 0 6 0 k‘f

In Figure 4.1 let XY, be a fixed frame and Xp-Yp be
a reference frame fixed to the body. W is the 3x1 generalized
vector of external forces and moments on the object and rj is
the position vector of the ith contact point in the body fixed
frame. As rj is moved to its new location, rj, the grasped
object is displaced by an infinitesimal twist { = (ApT, 8zp)T,
where Ap = (dxy, dyp)T is the infinitesimal linear
displacement of the center of mass of the object and dzyp is
infinitesimal angular displacement of the object.

Using a second order Taylor series approximation, we
can get the difference between rj and r:

1 2
dx, ~ szriy— —2-(52b) T

. 1 2
dyb + bzbrix— —2—(82b) T @1

If W is a conservative force, let the potential energy
associated with the vector W be defined by ©. Therefore the
total potential ¢cnergy of this system, @, is the combination of

the sum of the potential energies associated with each contact
(¥;) and © such that

1 (4.2)

where ¥j is the potential energy stored in the springs at the ith
contact point, ® is the potential energy associated with the
external forces and moments, and n is the number of contact
points.

By minimizing & subject to the constraint conditions,
we can solve for ug, ug, u (displacements), F (finger force)
of each contact and { (the object twist) provided all finger



motor displacements (ug ) are known. This is the basis for
simulating position control algorithms.

However, in the event that sliding occurs, the system is
no longer conservative since the frictional force does nonzero
work. Hence this method is no longer applicable. In [9], it is
shown that a similar minimum principle, called the "minimum
power principle” can be used to solve such problems. This is
not pursed in this paper, but is suggested as a direction for
furture research.

5 Simulation
5.1 _Programming

The statement of the problem is as follows:

The finger displacements (at the rigid substrates) are given by

_[uif : "i]=[ 47 ]
Q= Uyt 9ig

We consider here example of two fingered grasps with
rolling contacts. For more than two fingered grasps, we can
expand this method easily. A first order approximation for
rotation is used. Consider an equilibrium configuration and
define all displacement variables so that Qp =0, Q; = 0 and
Qir=0 @G =1, ..., n) at equilibrium. Now let the motors of
the fingers command nonzero displacements Qjf. The
objective is determine the resulting displacements Qp, Q; (i =
1, ..., n) and the resulting contact forces.

The basic problem then is:

The normal and tangential directions and the coordinate of
ith contact point are given by

n. t. T,
n = ix ¢ = ix r= ix
i niy i tiy ' i l‘iy

The external force, W, has the form

Wi

The displacement of the object, fis

dx

b A
Q, =4y =] 92
Szb qb3

and the displacements at the ith finger-object interface are
denoted by Qj:

(U "J —qnW

uic tl qi2
Q.= Yig ~Mi| _| s
Pue Y 954
e My s
(Uit ] | 96
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s T 14T
Minimize =G Q+-Q H

Given: 1. nj, t; and i Q+3;Q HQ

2. Finger displacements, ujf . AQ=C

. . Subject to BQ>D

3. External forces acting on the object ,W
Find: 1. The object displacement , f= (dxy, dyp, Szp)T where

2. Displacements, ujc, ujg and uje T T T T T

3. Finger forces, F; = Fin nj + Fit tj Q =(Q1 »Q, Qg )

T

Q, =(%yr %2 Y3 Y1ar Y150 G46)
T —

Q, =(Y917 922 923 904 U5 926)

T
Q, =@y a9y, 9,3

T

G'= (G 1T’ GzT’ G bT)

T
G, =(0.00,0 -k rq,; ~kq,4)

T
G, =(000,0 -k g, -k, q,)

Gy = (W Wy,
Hl 0 0
H=| 0 H2 0
0 o0 o
-knb 0 —knb 0 0 017
0 ktb 0 _ktb 0 0
I L LN
tb tb
0 0 0 knf 0
| 0 0 0 k\f
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Here we have assumed that the coefficient of friction is
large so that conditions of pure rolling exist at each contact.
Therefore the objective function is quadratic and positive
definite and the constraints are convex. It is convenient to use
the quadratic programming technique.

Next we present examples which we solved using the
QPROG routine in International Mathematical and Statistical
Libraries [2].

Figure 5.2 (a) A Planar Circular Disk with a Three Fingered Grasp

5.2 _Examples

Example 1) A Planar Circular Disk with a Three-Fingered Grasp

(see Figure 5.2.a)
Number of Fingers 3
Coordinates of 1 ( -0.8666, -0.5 )
Contact Points (m) 2 ( 0.8666, -0.5)
3 (0, 1. )
Load Force (N) 0.li + 0.2f appliedat (0,0)
Load Couple (N-m) 0.3k
Stiffness (N/m)
knb, Kib, knf, kif 100
_J Contact Forces (N) 1 ( 4.2496, 2.5216 )
F; 2 ( 44164, 2.3483 )
3 {_0.0666, -5.0651 )
Equilibrating Forces (N) 1 ( -0.0804, 0.0199 )
FiE 2 ( 00864, -0.1534 )
3 (_0.0666, -0.0668
Interaction Forces (N) 1 ( 4.333, 2.5017 )
Fil 2 ( -4.333, 2.5017 )
3 ( 0., -4.9983 )
Coefficient _of Friction u=0.25
Ratio of 1 -0.0122
FivFin 2 -0.0346
3 -0.0131
Example 2) A General Object with a Two-Fingered Grasp
(see Figure 5.2.b)
1ST FINGER FORCE 2ND FINGER FORCE
Load Normal Tangential Nommal Tangcmi‘i_
-0.00 0.5000 -0.0625 0.5000 0.0625
-0.01 0.4994 -0.0674 0.4994 0.0674
-0.02 0.4988 -0.0724 0.4998 0.0724
-0.03 0.4981 -0.0774 0.4981 0.0774
-0.04 0.4975 -0.0823 0.4975 0.0823
-0.05 0.4969 -0.0873 0.4969 0.0873
-0.06 0.4963 -0.0923 0.4963 0.0923
-0.07 0.4957 -0.0972 0.4957 0.0972
-0.08 0.4950 -0.1022 0.4950 0.1022
-0.09 0.4944 -0.1071 0.4944 0.1071
-0.10 0.4938 -0.1121 0.4938 0.1121
-0.11 0.4932 -0.1171 0.4932 017
-0.12 0.4926 -0.1220 0.4920 0.1220
-0.13 0.4924 -0.1231 0.4924 0.1231
-0.14 0.4924 -0.1231 0.4924 0.1231
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Coordinates

Unit Normals

i x y ay ny
1 (-4, 18) ( 0.9806, -0.1961 )
2 (4, 1.8) (-0.9806, -0.1961 )

(b) A General Object with a Two-Fingered Grasp



The example in Figure 5.2.b involves an object of
arbitrary shape and a two fingered grasp. Here the normal and
tangential stiffnesses of the body and fingers are all 10 units.
Each finger is given a 0.1 unit displacement in the normal
direction, while the tangential displacements are a - 0.0125
unit displacement for the first finger and a 0.0125 unit
displacement for second finger respectively. The friction
coefficient is 0.25. The load is a force W which is increased
from 0 to 0.14 units. The results show that sliding occurs
from W 2 0.14 units.

6. Conclusion

The modeling and problem formulation for computing
finger forces and the object displacement in a multifingered
grasp with compliant contacts are presented. We considered
two types of contact, rolling and sliding. A unified approach
to rolling and sliding contacts is described. When the friction
forces do zero work (rolling and frictionless sliding), the
system can be simulated by extremizing an objective function
derived from the potential energy of the system. Simulations
of systems include sliding contacts with friction is beyond the
scope of this paper, although the method described here is
able to predict sliding. ,

We simulated exampies of rolling contact using the
QPROG routine in International Mathematical and Statistical
Libraries. Finally, we presented two examples to illustrate the
methodology for simulation.
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