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Abstract

The optimal load distribution for two cooperating robots is studied
in this paper, and a new solution approach utilizing force ellipsoid is
proposed. The load distribution problem is formulated as a nonlinear
optimization problem with a quadratic cost function. The limit on
instantaneous power is considered in the problem formulation as the
joint torque conmstraints. The optimal solution minimizing energy
consumption is obtained using the concept of force ellipsoid and the
nonlinear optimization theory. The force ellipsoid provides a useful
geometrical insight into the load distribution problem. Despite the
presence of the joint torque constraints, the optimal solution is
obtained almost as a closed form, in which the joint torques are given
in terms of a single scalar parameter that can be obtained numerically
by solving a scalar equation.

I. INTRODUCTION

In recent years, growing research cfforts have been focused on the
subject of cooperative multiple robot systems. Multiple robot arms in
cooperation can perform many tasks that would be impossible to
perform for a single robot arm. Examples of these tasks are the
manipulation of objects without auxiliary equipments such as jigs or
fixtures, and the handling of heavy or large objects which preclude
single arm grip on the object. Potential application areas include
industrial automation where high level of flexibility is required, and
space station construction works where the environment is
unstructured.

When multiple robot arms grasp a common object, they form a
closed kinematic chain. For multiple robot arms forming a closed
kinematic chain, the degrees of freedom are less than the total number
of joints, and the linear mapping from joint torque vector space to the
space of resultant force vector on the object has a null space. As a
result, there are infinite number of joint torque solutions that can be
applied for a particular motion of the object. A suitable performance
index and constraints need to be introduced, so that the optimal joint
torques can be obtained.

A performance index commonly used in the literature is the
minimum energy consumption [1]}-{4]. Other performance indices used
are the maximum safety margin on the friction and joint torque
constraints [6], the minimum norm of contact forces [7] [8], the
balance of normal components of contact forces [1), the temporal
continuity of the applied forces [12], and the minimum total absolute
sum of normal components of contact forces {12]. Combinations of
some of these functions have been also studied [1] [12}.

Constraints introduced in the problem formulation is a factor
governing the solution approaches. Closed form solutions are obtained
without considering the physical constraints {2] [4] [7) [9] [10). Closed
form solutions show clearly the relationship between the input variables
and the solution and require short computation time. However, the
closed form solutions are difficult to obtain when constraints are
imposed on the joint torques. When the constraints are considered, the
solutions are obtained by numerical methods. The physical constraints
treated in the literature are friction constraints only [5] [8], joint
torque constraints only [3], or friction constraints in addition to the
joint torque constraints [1] {12] [13]). Numerical methods generally
require intensive computation. An efficient computation algorithm has
been developed in [13], which can be used when the performance index
and the constraints are formulated as linear functions.

The object grasping methods considered in the model of the robot
system can be divided into two cases. In one case, it is assumed that
end effectors of the robot arms maintain a firm grip on the object and
no motion between the end effectors and the object is allowed [2]-[4]
[7] [9]-{11]. In the other case , frictional contacts between the object
and the end effectors are assumed, and frictional forces prevent the
object from slipping away [1] [5] [8].

Force ellipsoid and manipulability ellipsoid [22] concerns the
manipulating ability of the robot mechanism in positioning and
orienting the object. The manipulability ellipsoid (or sometimes called
the velocity ellipsoid) represents the characteristics of the end effector
velocities that can be generated by all unit norm joint velocities, while
the force ellipsoid represents the characteristics of the end effector
forces that correspond to all unit norm joint torques. The
manipulability ellipsoid and the force ellipsoid have a dual relationship.
They have been used frequenily as indicators of the dexterity measure
of the redundant manipulators, and many researchers worked on the
control algorithms of redundant manipulators to maximize the dexterity
measure and avoid the singular positions in the workspace [20]-[29].

The objective of this paper is to apply the concept of the force
ellipsoid to the optimal load distribution problem for two cooperating
robot arms. Literature survey reveals that the possibility of using the
force ellipsoid in the load distribution has not received proper
attention, and the problem of the optimal load distribution and the
concept of force ellipsoid have been unrelated subjects. The only work
relating the two concepts is found in Tao and Luh [4], where the
solution of the optimal load distribution problem is used in deriving the
dual arm force ellipsoid equation. However, the force ellipsoid, by
definition, shows the characteristics of the end effector forces that
correspond to all joint torque vectors of unit instantancous power, and
as a consequence, its concept is well suited for the use in the load
distribution problem when the optimality criterion is the minimum
energy.

This paper is organized as follows. In section II, the mathematical
models of robots and object are given, and the optimal load
distribution problem is formulated. In section III and 1V, the optimal
load distribution is solved with and without joint torque constraints,
followed by conclusions in section V.,

II. PROBLEM FORMULATION

The model of the two robot arms and the object is shown in Fig. 1
, where the end effectors of the two robots are grasping an object. The
object is held rigidly so that no relative motion is allowed between the
object and the end effectors. The two robots are working in the
undistinguished mode, so that no distinction is made rcgarding the
master or slave status. For the purpose of convenience, the
superscripts i = 1, 2 are used to indicate the two robots. Let

iy = Position and orientation vector of the end effector of robot i

) in Cartesian space , 'x ¢ R™
i

'q = Joint position vector of robot i, 'q e R"
J = Manipulator Jacobian matrix, 'J ¢ R™*® m=sn
'T = Joint torque vector of robot i, 'T ¢ R"

iF = Cartesian force vector applied by robot i at the object
reference point, 'F ¢ R™
F = Resultant force applied by the two robots at the object
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reference point, F ¢« R™

The end effectors of the robots are imaginarily extended and the
reference position of the object is viewed as the end effector positions
of the two robots. It is assumed that two robots are non-redundant,
that is, n = m, have the same number of degrees of freedom, and do
not pass through singular positions so that the Jacobians always have
full ranks. The dynamic equations of motion for the two robots are
given by the following equations.

iD(g) '§ + H(q, ') + 'Glg =T+ (H'F ,i=1,2 (1

In general, the motion of the object is completely determined by
the three dimensional position and orientation vectors. If the object
reference coordinate is located at the center of mass, and the reference
coordinate axes coincide with the principal axes of the object, the
equation of motion of the object is described as follows.

M 0}[p] 0 ) MG X )
R + = -(F+ “F) (@
[V | w wxl Q
where M is a 3 x 3 diagonal matrix whose diagonal elements represent
the mass of the object, Iis the 3 x 3 diagonal inertia matrix of the
object, p is the position vector of the object in the world coordinates,

© is the angular velocity of the object, and G = [00g]" is the
gravitational acceleration vector.

Given the trajectory of the robots and the object, p, , ©, iq, i

and i‘q can be found , since there is no relative motion between the end
effectors and the object. Using 'B and -F to denote the left sides of (1)
and (2) respectively, these equations can then be rewritten [2).

CHTIF + 7 = 1B
@' + 71 =B
F='F+ 7% 6)]

Since the robots are assumed to be non-redundant, i.e. n = m
and the Jacobians are nonsingular, (3) can be reformed as below.

lf = (IJ)-T IB . lF
Zf = (ZJ)-Y ZB . 2F ) . -
F =1+ 7% , where f = (07T 1))

Combining three equations and using °f to denote ( (‘J)'T B +
T 2B -F), we get

4+ % = ' (&)

The joint torques of the robots must satisfy the constraint (5) to
follow the specified trajectory. Among the joint torques that satisfy this
constraint, the optimal joint torque that minimize energy consumption
is to be obtained. Let T denote the composite vector [ T 2yt 7
where 'T is the joint torque vector of robot i, and let E denote the
instantaneous power consumption of the two robots. If the joint torque
of a motor is proportional to the motor current, the power
consumption is proportional to the square of the joint torque. Without
loss of generality, it can be assumed that the joint torque variables in
(1) have been scaled such that the power consumption of the two

n
robots is equal to E = T' T = = ('T)* + (*T)? where 'T; denotes
j=1
the joint torque of the j-th actuator of robot i. Since the minimization
of power consumption at every instant results in the minimization of
energy,rthe objective function is formulated as the power consumption
E =T T.Hence,

E=TT
- Ty o, 2pTop 1T 1y T e 20 2527 2
- lfY IA lf + ZfT 2A Zf (6)

, where ‘A denotes iJ 'JT and is symmetric positive definite. The
optimal load distribution problem to solve can be expressed as below.

Minimize @E = 1A+ 2 242
subjectto M + X = °f )

111, OPTIMAL LOAD DISTRIBUTION WITH NO JOINT TORQUE
CONSTRAINTS

Force cllipsoid indicates the characteristics of the Cartesian forces
that correspond to all unit norm joint torques. The force ellipsoid is
mathematically defined as follows [22]. Assuming that an n degree of
freedom robot arm is working in an m dimensional task space, where
m s n, we have,

T = JQ'f ®

¢+ and f denotes the joint torque and the end effector force

respectively. The unit sphere in R” defined by It = 1 canbe
mapped into an ellipsoid in R™ through J.
|-r|2 = 'y
(Nt = 1 )]

The ellipsoid defined in (9) is called the force ellipsoid. The principal
axes of the force ellipsoid are aligned with the directions of the
eigenvectors of (JJ7), and the length of each axis is the reciprocal of
the square root of corresponding eigenvalues. The force ellipsoid
provides a new view point of the load distribution problem, as will be
shown below.

Let f=[ %), Q=diag{'A, %A}, W=[IT1],
where [ is the m x m identity matrix. Then, the optimization problem
in (7) can be reformulated into Problem 1 using simplified notations.

Problem 1 :
1
Minimize - ffof
subject to
W= ¢
Solution

The optimal solution f" satisfies the first order necessary condition for
this problem [31].

Qf + wha' -
Wi . °f = 0 (10)
where A" is 2 m x 1 Lagrange multiplier. Using the previous

notations, the necessary conditions can be rewritten.

Al SIA (M -0r) (1)

The objective function can be intqrp;et;d using the equation
of the force ellipsoid. Let 'E = 7 'T = if' ia 'f. Then 'E is the power
consumption of robot i that is required to exert 'f. Since 'E = if' ‘A if
is the equation of an ellipsoid, 'E is also equivalent to the size of the
ellipsoid. The shape of the ellipsoid is determined by 'A. 'E and 2E
can be written using the constraint in (7) as 'E = !f' 'A 'f and 2E
= (¥-F)" 2A ('f-°f). Now, the necessary condition (11) means
that the normal vectors of the two ellipsoids at *f must be in the
opposite directions and their magnitude be equal. Hence the
optimization problem is equivalent to finding the powers of two robot
arms, 'E and %E , such that the two ellipsoids meet sharing the same
tangent plane and , at the same time, the sum of the two powers g +
2E is minimized. " is then equal to the meeting point of the two
ellipsoids. Fig. 2 shows the two ellipsoids when the dimension m is
equal to 2. This geometric interpretation provides a useful intuition in
this load distribution problem .

Since Q is positive definite and W has full ranks, this problem is
known to have a unigue solution [31].  Using the matrix identity
IH1 + 20y = TH('H + 2H )? 2H , where 'H, 2H and 'H +
H arc nonsingular matrices, the solution is obtaincd from (10).
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[ 1]7
= o'W waqlw' '
( 1]‘]: + ZJ2JY )- ZJZJT ( (IJ)J g 4+ (ZJ)-T ZB . F)

(U BT YT (AT B+ (T8 -F) (D (12)

A similar method was used for multi-arm cooperating robots by
Hayati [9]. The optimization problem has a unique optimal solution.
The solution in (12) is the same as that obtained by the conventional
pseudo-inverse method in Zheng and Luh [2].

IV. OPTIMAL LOAD DISTRIBUTION WITH POWER
CONSTRAINTS ON JOINT TORQUES

A. Formulation of constrained optimal load distribution problem

The load distribution problem is studied when the joint torque
constraints are included in the problem formulation. The joint torque
constraints commonly used in the literature [1] [3] [12] [13] are the
constant bounds on the individual joint torques, i.e.,

|‘Tj| $ Tpax =1L .,m (13)
, where IT; denotes the joint driving torque of the j-th actuator of
robot i. This constraint is an approximation of the limit of the joint
torque, which, in reality, can be a function of the joint speed.

Expression (13) represents a rectangle in n-dimensional torque space. -

In this paper, we treat the case where the power supplied by each
robot is constrained by a maximum value. The constraint on power
consumption is well suited for the force ellipsoid approach, and it can
be handled with ease. As mentioned in section II, the power consumed
by the joint actuators of robot i is equal to 'TT 'T . Let the power limit
be given by 'E_ ., i.e.,

T . . . o
THT = ( "il‘l, 5 '”Ii‘rl )2( Ty s 'T;n ) )

= (T)" + (T + ... + ('T,)

s 'Enax (14)
This constraint represents a sphere in n-dimensional torque space.
Also , from the definition of 'f in (4),

E=iTTir = YT iA B =12 (5)
The constrained optimal load distribution problem can be
formulated as below.

Problem 2 :
1
Minimize 7 far
subject to
Wi = °f
f: Rf = ‘ZEmax @16)
1S s °Epa 17

where R = diag { 'A, 0} and S = diag {0, 2A}. Problem 2 is
the same as Problem 1 except that the feasible region of f is further
constrained by the two additional inequality constraints. Since the
objective function and the feasible region of f are strictly convex, the
optimal solution, if it exists, occurs at a unique point. The solution of
Problem 2 belongs to one of the following cases.

[ Case 1) The unique solution of Problem 1 satisfies the two
inequality constraints. In this case, the two inequality constraints do
not affect the solution and the solution of Problem 2 is the same as that
of Problem 1.

[ Case 1 ] The solution of Problem I violates both inequality
constraints. In this case, Problemn 2 has

no solution.

[ Case 11l ] The solution of Problem 1 violates one of the two
inequality constraints. Then, the global optimal solution of Problent 1
lies outside the feasible region given by the three constraints of
Problem 2 . Let this feasible region be denoted by o, Since there is
no local optimal solution of Problem ! inside the feasible region g,
the solution of Problem 2, if it exists, must lie on the boundary of the

feasible region @, which means that at least one of the two inequality
constraints is active. Let f denote the solution of Problem 2 . Then,
the Case III can be subdivided into three cases that can possibly occur.
[CaseM-a] f satisfies ' RE = 'E . and £7SF < 2E e
[ CaseIll-b] f satisfies f' Rf < IE and f7Sf =2E

‘max max*

{Case lllc] f satisfies 'R = 'E,, and £7Sf =2E_.
B. Geometric Interpretation

The geometric interpretation of Problem 2 is similar to that of
Problem 1 given in section I1I. The optimization problem is equivalent
to finding the powers corresponding to the two meeting ellipsoids such
that the sum of the two powers is minimized. However, in Problem 2,
there are limits on the sizes of the ellipsoids as given by (15). Fig. 3a
shows the Case I, where the powers of the two robots, or equivalently,
the sizes of the two ellipsoids corresponding to the optimal solution of
the unconstrained problem ( Problem 1) are within their limits. The
ellipsoids in real line correspond to the solution of Problem 1 and the
ellipsoids in broken line correspond to the limits of the ellipsoids. Fig.
3b shows the Case II, where the limits on the two ellipsoids prevent
them from overlapping, and no solution exists. Fig. 3¢ and 3d shows the
Case III-a and III-b respectively, where the power corresponding to
one of the two ellipsoids is fixed to its maximum value, and the other
ellipsoid that meets the fixed ellipsoid with the least power is to be
determined. Fig. 3e shows the Case III-c where the two limit ellipsoids
meet at a point. This situation is a special case of Case III-a and III-b.

C. Solution Steps
From the above observations, the solution of Problem 2 is obtained
by the following steps.

[ Step 11 Problem 1 is solved first. If the unique solution of Problem
1 satisfies the two inequality

constraints of Problem 2, then, the unique solution of Problem 2 is the
same as that of Problern 1. If the unique solution of Problem 1 violates
both inequality constraints, then, Problem 2 has no solution, and the

trajectory of the robots and the object should be replanned.

[ Step 2 ] If the solution of Problem I violates only one of the two
inequality constraints, the

candidates for the solution of Problem 2 are found by solving Problem
3 and Problem 4 below.

Problem 3 : Problem 4 :

.. 1 T . 1 T
MlmmnzeT fQf Minimize —2~ fQf

subject to subject to

Vyf-lcf=0 Wf-% =0
- T 2

ffRE-'E . =0 F'SEf-“E ,, = 0

[ Step 3] The candidate solutions obtained in step 2 are examined
and the candidates violating any of the two inequality constraints are
discarded. From the rcmaining candidates, the power E = f1 Q f is
calculated and the candidate with the smallest power is the final
solution. If all solutions of Problem 3 and Problem 4 violate the
inequality constraints, then, the Problem 2 has no solution. The joint
torques of the two robots arc given by the relation 'T = 1T if,

[ End of Step ]

The solutions of the Problem 3 and Problem 4 are examined next.

D. Solution of Problem 3

Problem 3 :
1
Minimize 7 fof
subject to
Wf - =0

T 1
fRI-IE,, =0

This problem can be subdivided into three cases depending on the
magnitude of lEmax.
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Assume lEm“ > " 1A ¢f . Then, since Q = R + S, it is clear
that,
minimum cost of Problem 3 = 'E_, > °f' 'Af
However if we choose f = [ f 2f] = [°f 0), then, this selection of
f satisfies the constraints in Problerm 2 while its cost is °f' 1A °f which
is smaller than the minimum cost of Problem 3. Hence, the solution
of Problem 3 when 'Ep, > “f" A °f can not be the optimal
solution of Problem 2 , and need not be considered.  Assume 1Em "
= " 1A °f. Then, the minimum cost is equal to 1Em“ = T4
and the optimal solution of Problem 3 is equalto = [f 0].

Finally, assume lEmu < e, Then, the uniqueness of the
optimal solution of Problem 3 can be shown.

Lemma 1. If'E_, < °f' 'A f, the solution of Problem 3 exists
and is unique.
(proof)

Problem 3 is equivalent to minimizin%thc power 2E such that ff
A% =1E, and 2E=("%-%) 2A (!-F). These two
equations are the equations of ellipsoids. The geometric interpretation
of this problem is that we want to find the smallest size of the ellipsoid
given by 2E = ('f-f)" 2A (f- °f) such that the intersection of
the two ellipsoids is non-empty. Fig. 4 illustrates the problem,

Let 'L={Y%|""'A' <E,, } and 2L(x) = { ) (-
)" 2A (-f) s x }. Then, since 'E_,, < ' YA, there
exist ¢ > 0, such that 1Lr\ZL(c) = . Also, there exist a
such that 'LnL(x) = o,¥x<a, and 'La2Lx) » o,Yx2
a. ais the minimum value of 2E , and two ellipsoids 'L and 2L (a)
meet at a point sharing a common tangent plane. Hence, the solution
is unique. n

Let the constraints be denoted by h(f) = 0. "11‘hen ,

W = [ WE - = 0 (18)
LRS- E,, 0 J
()" [ W' 2Rf ] 19)

Hence, Vh(f") has full ranks and the optimal solution is a regular point.
The first order necessary conditions for this problem are

Qf + WA+ Rf =0 (20)
v_va' - °1f =0 : 21)
fTRE - B, =0 (2

where A" and & are Lagrange multipliers of dimension ( m x 1) and
(1 x1) respectively. From (20),

(Q+eRYC=-W2A 3)
We show that (Q + u'R)isnonsingular. We note

(Q+4'R) = diag{(i+s)'A, %A } (24)
det (Q+ 4 R)=(1+4 ) det 'A det?A (25)

Since iA_= T is positive definite, det( Q + «'R) is zero if and

only if #” = -1. However, if we assume that 4~ = -1, then, from
(23),

oo ¥ ] = a1 [ ]

0 Ay {;.‘ (26)
Solving the equation,

A =0,¥=0,0=¢ @7
and by (22), we get °ff 'A °f = 'E which contradicts the

assumption. Hence 4” # -1 and { Q + & R ) is nonsingular. Thus,
from (23),

f=-(Q+us RYIW A (28)

From (28) and (21),

W(Q+uRY'W A" = - 29)

The nonsingularity of [ W ( Q + «" R )™ W' ] is shown next.
Using the definitions of f, Q, W, R and §, the necessary conditions
(20), (21) and (22) can be rewritten as

{1+ )lAl = 2A(-T) (30)
1T 15 1f = 1E_., (31)

The normal vectors of the ellipsoids 'f' 1A If = ¢ and (- )
24 (Y-) = ¢, , where ¢, and c, are constants, are given by 2 ‘A
If and 2 2A (' - °f ) respectively. Further, as shown in Fig. 4, the
optimal solution occurs when the two ellipsoids make a tangential
contact with each other, and the meeting point is the optimal solution
If' . Hence, the normal vectors of the two ellipsoids at f* must be in
the opposite direction, and we get from (30) ,

S(1+g) <0 (32)

y' > -1 (33)

In (29), the matrix [W (Q + ¢ R)!T W' Jisequalto [ (1 + & )
1A 4+ 2471 ], and from (33), it is nonsingular. Thus,

A= (W(Q+gRY'W T (€0

Combining (34) and (28),

F6) = (Q+w RYIW [W(Q+u Ry W e

[ AT2A[(1+ 6 ) 'A+ 2AT A
(

T+u)[(1+x ) A+ 2A7 A J 35)
Furthermore, f(x) must satisfy the constraint (22),
fTGYREG) - By, = 0 (36)

which is a function of the scalar variable 4" . & can be obtained by
solving (36) numerically. Once 4 is known, the optimal solution of
Problem 3 when E_, < °f" A f is given by (35).

Lemma 2. Some properties of (36) are examined. Let 1Emax
< °f" 1A “f and g( fx) ) = f()' R f(x) - g, » where f(x) is given
by (35) . Then,

) g(f(-1))>0

i) dg(f(w))/ds <0 forallpe>-1

From Lemma 2 and (33), «" is obtained by simply searching for the
zero crossing point of the function g(x) for » > -1, and requires a

short computation time.

E. Solution of Problem 4

Problem 4 :
1
Minimize *2— faof
subject to
Wf-°% =20
fTSf-2E, = 0

The Problem 4 has the same structure as the Problem 3, and the
solution is obtained by the same procedure as in Problem 3.

Assume 2Em x> °f" 2A °f . Then, sincc Q = R + S, it is clear
that

a

v

> °ff 24 ¢

minimum cost of Problem 4 > zEmax

However if we choose f = [f 2f] = [0 °f], then, this selection of
f satisfics the constraints in Problem 2 while its cost is 7 2A °f which
is smaller than the minimum cost of Problem 4. Hence, the solution
of Problem 4 when zEmax > " 2A °f can not be the optimal
solution of Problem 2, and need not be considered.
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Assume 2E, x = °ff 24 f . Then, the minimum cost is equal to
zEmAx = " 2Af and the optimal solution of Problem 4 is f =
[0 “f].

Finally, assume %E,,,, < °f' 2A °f. Then, the optimal solution of
Problem 4 is found in the exactly symmetrical way as in the Case ITI-a.
f = (Q+u' Sy W W(Q+usylwiyte

= (1+e)['A+(1+4)2A 28
AtIAA+ (1) AT 2A% ) 37

Furthermore , £ must satisfy the constraint,
- ‘r . L3 .
fe)sfu)-%6,, =0 (38)

which is a function of the scalar variable ¢* only. 4" can be obtained
by solving (38) numerically. The results symmetrical to those of (33)

and Lemma 2 in section IILLD can be derived, and the numerical
search for 4™ can be simplified to finding the zero crossing point of the
function g(k) for « > -1. Once " is known, the optimal solution of
Problem 4 when 2E,, < °f' 2A °f is given by (37).

V. CONCLUSIONS

A new geometric solution approach to the optimal load distribution
utilizing force ellipsoid is proposed. It is shown that the optimal load
distribution problem for two cooperating robots can be solved using the
force ellipsoid and the nonlinear optimization theory. The concept of
the force ellipsoid gives a useful geometrical insight into the problem.
The load distribution problem is formulated as a nonlinear
optimization problem with a quadratic cost function and constraints,
and the optimal joint torque solution minimizing the energy
consumption is obtained.

In the unconstrained optimal load distribution, the optimal solution
is obtained in a closed form, and it agrees with the solution obtained
by the conventional pseudo-inverse method. In the constrained optimal
load distribution, the torques are constrained such that the maximum
value of the instantancous power is specified. It is shown that, despite
the presence of the joint torque constraints, the optimal solution can
be obtained almost as a closed form, in which the joint torques are
given in terms of a single scalar parameter, and the parameter itself
can be obtained by solving a scalar equation numerically.
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