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ABSTRACT

This paper presents a stabilization technique for unsta-

ble systems. An inverted pendulum, which is a typical -

unstable mechanical system, is considered and stabilized
by a nonlinear control. The stabilization problem in this
system is related to that in postural control of human be-
ing. In this paper, the variable structure control (VSC) is
applied to the stabilization problem. Robustness by the
VSC and that by a conventional linear feedback controller
are compared.

1 INTRODUCTION

The rapid progress of science has been made recently,
and many complex systems are constructed. These sys-
tems involve problems of stabilization.  Since such sys-
tems may be unstable. It is interesting to know which kind
of a control law is effective in stabilizing systems. In this
study, an inverted pendulum is stabilized by a linear con-
trol law and a noulinear control law, and the performances
by the controllers are compared. State feedback control (a
pole assignment or an optimal regulator)-is used as the lin-
ear control law, and variable structure control law is used
as the nonlinear contro! law. If the state feedback control
is used as a conventional control method, precise mathe-
matical models of the systems are required. In practice,
it is, however, impossible to do so, since the mathemati-
cal models can not represent system properties completely
due to uncertainties, which is caused by some errors such
as ones in constructing models and determining parame-
ters, etc. Hence, it seems that variable structure control
law, which yields some robustness properties against the
uncertainties, is effective in controlling systems. In section
4, mathematical models of inverted pendulums are given.
The outline of VSC design is simply described in section 5.
In section 6, VSC design of the inverted pendulum are de-
scribed. Simulations and experimental results are shown
respectively in section 5 and section 6.

2 CONTROLLED OBJECT

Controlled object is a cart-pendulum as shown in Fig.

1. The horizontal displacement of pivot on the carriage
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and the rotational angle of the pendulum are measured by
each potentiometer. The carriage is moved horizontally by

the motor. TN :

motwor

potentiometer

DIA computer
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Fig.1. Controlled object

3 MATHEMATICAL MODELS

In this section, mathematical modcls of a single inverted
pendulum and a double inverted pendulum are presented.
(1) Inverted pendulum

QO

Fig.2. Inverted pendulum

: the horizontal displacement of pivot on the carriage
: the rotational angle of the pendulum

: the mass of the carriage

: the mass of the pendulum

: the half length of the pendulum



F: the friction coefficient for the linear motion of the caz-
riage

C: the friction coefficient for the rotary motion of the
pendulum

u: the voltage of the input

G: the gain coefficient

Is: the moment of inertia with respect to the center of
gravity (= #)

Selecting (z,60) as generalized coordinates and consider-
ing u, = Gu,ug = 0, then Lagrange’s equation yields

(M +m)i + mif cos@ — ml6*sinf + Fi = Gu (1)

%mlzé + mlicosd + Ch — mglsing =0 (2)

Linearizing the above equation (1) and (2) and-choosing

the state variables z = (z; z, 23 z4) = (z 0 2 9), we obtain
the linear state space model of the inverted pendulum

() = Az(t)+ Bult) (3)
0 0 1 0
0 0 0 1
A = 0 mi? (Ig+mi®)F —Cm!
N N N
0 —(M+m}mngl —milF C(M+m)
N N
= ~GUg+mi?) gmi \T
B = (00 =g =)

where N = m212 — (M + m)(Ig + mi?)
Selecting (z,0) as outputs, then the cutput equation is
described by

Il

y(t)
C =

Cz(t)
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(2) Double inverted pendulum
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Fig.3. Double inverted pendulum

q1: the'rotational angle of the link 1
¢o: the rotational angle of the link 2
my: the mass of the link 1
mga: the mass of the link 2
[y: the half length of the link 1

l5: the half length of the link 2
D,: the friction coefficient for the linear motion of the car-
riage -
D;: the friction coefficient for the rotary motion of the link
1
D,: the friction coefficient for the rotary motion of the link
2
Q: the gain coefficient
I,: the moment of inertia with respect to the center of
gravity of link 1 (= m_;’{
I,: the moment of inertia with respect to the center of

gravity of link 2 (= ’—"§5)

The other notations (z, M, u) are the same meanings as
ones of the inverted pendulum.

Selecting (z,q1, g2) as generalized coordinates and con-
sidering u, = Qu, ug, = ug, = 0, then Lagrange’s equation
yields ’

(M + my +.my)E + myly(gacos gz — G singy) + D&
+{my + 2ma)l 1§ cos g1 — (my + 2ma)li¢fsing =

(my + 2ma)hEcos gy + {(my + 4me)l} + L }g1 + Dy

+2mahla{d cos(q2 — q1) — 63 sin(g, — @)}
—Dy(g2 — 1) ~ (my + 2mg)ligsing, =

malaZ cos g2 + 2malila{d cos(g2 ~ 1) + & sin{gs — q1)}
+(mal2 + I2)é + Da{de — ¢1) — malagsing, =

Linearizing the above equation and choosing the state
variables 2 = (2, 22 23 T4 75 %6) = (T ¢1 2 T ¢ §2), We
obtain the linear state space model of the double inverted
pendulum

#(t) = Az(t)+ Bu(t) (4)
"0 0 0 1 0 0
0 O 0 0 1 0
0O 0 0 0 O 1
A =
0 ap a3 a a5 ay
0 as; as3 ase ass ase
0 agx ags ass Qe ace
_ QG*~FL) QBL-GC) QcF-GB) \T
B = (0 00 « R ? I3 I3 )
where

A= M +m; +my
B= (m, + 27]’I.2)ll

C= mglg

D= D,

F= (ml +4M2)l%+11
G= 2m21112
H= D]_ + D2

I= —Dz

J= —(m1 +2m;)lig
L= mzl% + 12

P= —malag

R= B?L - FAL+ G*A~2GBC + FC*?
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and

_ JIGC-BL) _ P(BG~FC)
Qg2 = —p— Qg3 = —— 7 —
_ D(FL-G%) _ HGC+IBG-HBL-IFC
Qg4 = T Q45 = e
_ I(GC-GB-BL+FC)
a4 = R
_ JLA-C?) _ P{BC-GA)
a5y = —=—pf—— a5y = — @/
_ D(Gg—BL) _. BCI-GAI-HC*+HLA (5)
agy = ——fF—— agy = TR A
__ IHGA+LA-BC-C?)
asg = — g
_ J(BC—GA) _ P(FA-D?)
gy = ——p—— g3 = —p
_ D(Déz—CF) _ BCH-GAH-IB*+IFA
Ggy = ——pF Qs = = I3
__ I{B*~FA+BC~GA)
aee =~ r

Selecting (z, g1, ¢2) as cutputs, then the output equation
is described by
y(2) Ca(t)

c

It

o= O

0
0
1

O OO

1 00
0 00
0 00

4 NONLINEAR CONTROL
LAW

4.1 Variable Structure Control

Variable Structure Control{ VSC) is a switching feedback
control. This variable structure control law gives an effec-
tive and robust method in controlling nonlinear systems.
VSC use a switching feedback control to drive the state
trajectory of the nonlinear system onto a surface which is
specified by a designer, and to maintain the system trajec-
tory on this surface for all subsequent time. This surface
is called the switching surface because if state trajectory
of the system is above the surface, a control path has one
gain and if state trajectory is below the surface, a con-
trol path has another gain. The dynamics restricted to
this surface represent the controlled system behavior. By
selecting the switching surface properly, VSC can stabi-
lize the system more effectively. VSC design breaks down
into two phases. Phasel needs to construct switching sur-
faces so that the system restricted to the switching surface
represents a desired behavior. Phase2 needs to construct
switching feedback gain which drive the state trajectory
to the switching surface and maintain it forever.

4.2 System Model

This paper considers the linear dynamical system de-
scribed by

It

Az(t) + Bu(t)
Cz(t)

A(n x n), B(n x m)
C(?x :) (6)

4.3 The Switching Surface

The switching surface o(z) = 0 is a (n-m)-dimensional
manifold determined by the intersection of m(n-1)-
dimensional switching surfaces o;(z) = 0. The switch-
ing surfaces are designed such that the system response
restricted to o(z) = 0 has a desired behavior such as sta-
bility.
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In general nonlinear switching surfaces are possible. But
for the simplicity of design, linear switching surfaces are
more popular. So this paper uses linear switching surfaces
of the form

o(t) = Sz(t) = 0 (7)

where S is an m x n matrix.

4.4 Sliding Modes

After switching surfaces are designed, the next impor-
tant aspect of VSC is to guarantee the existence of a sliding
mode. If in the vicinity of the switching surface o(z) = 0,
the velocity vectors of the state trajectory always points
toward the switching surface, then a sliding mode exists.
Therefore if the state trajectory intersects the sliding sur-
face, the value of the state trajectory or “representative
point” remains within a neighborhood of {z|o(z) = 0}. If
a sliding mode exists on o(z) = 0, then o(z) is called a
sliding surface.

4.5 Conditions for the Existence of a
Sliding Mode

Existence of a sliding mode requires stability of the state
trajectory to the sliding surface o(z) = 0 at least in a
neighborhood of {z|o(z) = 0}. In other words, the repre-
sentative point must approach the surface at least asymp-
totically. The largest such neighborhood is called the re-
gion of attraction.

The existence problem resembles a generalized stability
problem. Specifically, stability to the switching surface re-
quires selecting a generalized Lyapunov function V(¢,z)
which is positive definite and has a negative time deriva-
tive in the region of attraction.

The structure of the function V(¢,z,0) determines the
ease with which one computes the actual feedback gains
implementing a VSC design. For poorly chosen Lyapunov
functions, the computations of the feedback gain can be
untenable.

For all single input systems, a suitable Lyapunov func-
tion is V(t, ) = Lo%(z) which cleatly is globally positive
definite. In VSC, ¢ will depend on the control and lLence
if switched feedback gains can be chosen so that

dV _ 1do?
dt ~ 2 dt

do
— <0
“u

(8)
in the domain of attraction, then the state trajectory con-
verges to the surface and is restricted to the surface for
all subsequent time. The feedback gains which would im-

plement an associated VSC design are straightforward to
compute.

4.6 The Method of Equivalent Control

The method of equivalent control is a means to deter-
mine the system motion restricted to the switching surface
o{z) = 0. Suppose at t,, the state trajectory intercepts
the switching surface and a sliding mode exists for ¢ > t,.
The conditions for the existence of a sliding mode are that



6(z(t)) = 0 and o(z(t)) = 0 for all ¢ > to. From the chain
rule &(z(t)) = -g—:] Z = 0. Substituting for & yields

[%J = [gﬂ (Az(t) + Bu,) =0

where u.q is the so-called equivalent control which solves
this equation. Now we select a linear switching surface as
a switching surface. Hence o(z) = Sz =0,52 = S. Then

St = S(Az(t) + Buey) =0 (10)

(9)

Substituting this u., into (6), then the motion of (6) de-
scribes the behavior of the system restricted to the switch-
ing surface providing the initial condition z(ty) satisfies
o(z(ta)) = 0.

To compute u.q, suppose that SB is nonsingular. Then

Uy = —(SB) 1S Az (11)

Therefore, given o(xz(ty)) = 0, the dynamics of the system
on the switching surface for t > ¢, is given by

[I-B(sB)™'S| Az

(12)

This equation can be advantageously used in constructing
a switching surface.

Notice that (12) and the constraint o(z) = 0 deter-
mine the system motion on the switching surface. In other
words, in the sliding mode, the equivalent system must sat-
isfy not only the n-dimensional state dynamics (12), but
also the “m” algebraic equations, o(t) = 0. The motion on
the switching surface will be governed by a reduced order
set of equations. This reduction of order happens due to
the set of state variable constraints, o(z) = 0.

4.7 The diagonalization Method

The diagonalization method needs to constructing a new
control u* by a nonsingular transformation , Q’l—ng =
Q~1SB, of the original control u defined as

u* = Q7 '(t,z)SBu (13)

where Q(¢, z) is an arbitrary m x m diagonal matrix with
elements ¢;(t,z)(¢ = 1,...,m) such that inf|g(t,z)] > 0
for all ¢t > 0 and all z. Often Q(¢,z) is chosen as the
identity. The state equation using u* is described by

i = Az + B[SB]"'Q(t, z)u" (14)

Although this new control structure looks more compli-
cated, the structure of ¢(t) = 0 permits us to indepen-
dently select the m-entries of u* to satisfy the sufficient
conditions for the existence and reachability of a sliding
mode. Once u* is known, the required u is obtained from
u = (§B)~'Qu*. For existence and reachability of a slid-
ing mode it is enough to satisfy the condition oT(t)d < 0.
In terms of u*

o(t) = SAz + Qu*(t) (15)
Thus if the entries u** and u*~ are selected to satisfy
guit < —(Sit Siz ... Sin)Az if 0, >0

giu:“ > _(Sil S,’z S,',,‘)A:Zf lf 0; <0 (l =1~ m)

(16)
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then sufficient conditions for the existence and reachability
are satisfied. As mentioned above, the control actually
implemented is :

u=(SB)~!Qu* (17)

5 CALCULATION

Now this VSC design method is applied to the system
of the inverted pendulum. The experimental results of a
double inverted pendulum were not obtained because the
precision of instruments is not enough to control. Hence
this paper mainly deals with a single inverted pendulum.

5.1 The Method of Equivalent Control

From (3), the state equation of the inverted pendulum
is described by

z(t)

Az(t) + Bu(t)
0 0
0
-mzal2
N
—~(M+m)mgl
N

(18)
0
1

=Cml

N
C{M+m)
N

1
0
(Ig+mi®)F

N
=miF

A

0
0

[2%}]
a42

—Glg+ml?)
(0 o =ougemn

1 0
0 1

asy Qaq
Q43 Qqq

o000 © O O

Gml
N

)T

(008 &)

Let § = ( S S2 S3 S84 ) ,then

(t) [1 - B(sB)™S] Ax(t)
0010

00 1

ty ta i3

ty ts o

(19)

1l

0
0
0

where

(032b4 — a42b3)54
bysy + bysy
—bss) + (aszby — ayzbs)sq
bysy + byss
-—b3sy + (asaby ~ aabs)sa
b3sz + basa
(04253 — a32b4)s3
bysy + bysy
—bysy + (@q3bs — azsby)ss
bysy + bysa
—bysg + (a4ab3 ~ azsby)ss
bJS;; -+ b434

t

123

t3

tq

143

143
i.e.

i z3

It

.’iz T4
tll‘z + t2223 + t3$4

t4$2 + t5$3 + tG:c4

1l

I3



From the condition of the existence of a sliding mode

o{ty=Sz =0

51T + S2T + S3x3 + s4x4 =0 (24)
Let s4 = 1,then
x4 = —(s121 + 8272 + 53%3) (25)
Substituting (25) into (20) ~ (23),
"il = T3 (26)
& = —(5171 + 5272 + 5373) (27)
i:g = —'Sltg.'l?l + (tl - Sgtg)?)g + (tz b Satg)ra (28)

Consequently, the reduced order equivalent linear system

18
0 0 1 I
= —81 —389 83 T (29)
~sit3 (t1 = s2t3) (t2 — s3t3) z3 _

Then the characteristic equation of (29) is
)\3+(32+83t3——tg))\z+(Slt3—32t2+53t1))\+81t1 =0 (30)

By choosing S = ( sy So S3 ) properly, we can ar-
range poles arbitrarily.

5.2 Diagonalization Method

Let @ =1,Q°'=1and recall § = ( S51 S2 53 54 ),
then sufficient conditions for the existence of a sliding
mode are

qu't < —(s1 82 53 84)Az if >0

qu*™ > —(s1 s2 53 84)Az if o0<O0 (31

Let —SAz = hyz;+hoxy+hazz+hyzs and u* = K*z where
K* = ( ki k3 k3 ki ), to satisfy the above condition
of a sliding mode, K* = ( ki k3 k3
the following.

k::{

Let the size of each switching gain (ke ke kze kye). Since
u = (SB)™'Qu* and u = Kz, K = (kl ko ks Ic.,)

must satisfy the following.

b = { < (hi — kie)(SB)™!

k3 ) must satisfy

< h;
> h;

ox; >0

ox; <0 (i=1~4)

(32)

oz; >0

oz; <0 (f=1~4)

(33)

> (h; + kie)(SB) !

6 SIMULATION

The value of each parameter is the following.

M = 1425kg m = 0.241kg

l=04m F =126kg/s (34)
G =166N/V C =0.000515kg - m?/s
g9 =9.81m/s?

The standard Runge-Kutta method was used for simu-
lation.
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6.1 State Feedback Control

The initial conditions are z = Om, & = Om/s, 8 =
0.14rad and 0 = Orad/s.

Choosing K = ( —1.50 ~5.50 —2.00 ~1.30 ) yields
poles Ay = —2.27, Ao = —6.17 A3 = ~2.47 + 7.97%, Ay =
~2.47 — 7.97i. The corresponding figures are shown in

Fig.4 and Fig.5.

“rs} | (ms)
1
i T—T
06
e
-18 ] ("1
-1 © i (m}
- a i

Fig.4. State space
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Fig.5. Simulation

6.2 Variable Structure Control

The initial conditions are £ = Om, & = Om/s, § =
0.2rad and 8 = Orad/s.

Choosing S (1.016362 4.149764 1.355703 1 )
yields poles A; = —1.00, Ay = ~6.0040.037 A\3 = —6.00 -
0.03:. And let kje = 1, kqe = 10, kye = 2, kqe = 1. The



corresponding figures are shown in Fig.6 and Fig.7.

*ss) | mrs)

()
(m}
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Fig.6. State space

SIMULATION GRAPHICS »xx
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+ ()

Fig.7. Simulation

7 EXPERIMENT

7.1 State Feedback Control

Choosing K = ( —2.24 —7.31 —2.41 -1.66 ) yields
poles A} = —3.03+2.561, Ay = —3.03—2.56i, A\3 = —5.15+
3.371, Ay = ~5.15 + 3.37i. The corresponding figure is
shown in Fig.8.

EXPERIMENT GRAPHICS
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Fig.8. Experiment
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7.2 Variable Structure Control

Choosing S 3.839674 4.584338 1.547620 1 )
yields poles Ay = —6.00, d; = —4.24 4+ 8.48{ \; = —4.24 ~
8.48¢. And let ke = 0.3, kze = 0.1, kze = 0.3, kye =0.1.
The corresponding figure is shown in Fig.9.

EXPERIMENT GRAPHICS wxx

L ]
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Fig.9. Experiment

8 CONCLUSION

An inverted pendulum, which is a unstable mechanical
system, has been stabilized by using state feedback con-
trol and variable structure control. From the experimen-
tal results, a big difference between the two controls was
not observed. The reason would be that nonlinearity of
the system is small in the neighborhood of system equi-
librium. It seems that VSC will be effective for systems
with large nonlinearities. —e.g., mechanical systems with
coulomb frictions and robotics.

The problems which should be considered next are how
to choose the size of each switching gain and how to design
an optimal control about VSC.
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