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Abstract

For a single-input nonlinear system, the transforma-

tion which transposes the nonlinear system to a controll-

¢ However

able-1ike canonical system has been proposed
this method islimited by a single-input system and it is
difficuit to apply the method actually. In this paper we

propose a method which transposes the nonlinear system
with multi-input into an equivalent pseudo-linear system.
And we apply the pseudo-linear system to a linear optimal
regulator. To confirm the effectiveness of the proposed

method, a transient stability control of the generator

with an excitor and a governor is considered.
1. Introduction

A number of papers concerned with a control of non-
linear systems have been proposed ‘>~ ©'®_  Among them,
the approach which transposes the nonlinear system into
a linear system is thought to be one of the most useful
methods.

Hunt and Su et al. showed a method of transforming a
in the whole state

nonlinear system into a linear one

space. Reboulet and Champetier generalized the method of
Hunt etal.. They proposed a technique for the transforma-
tion of a nonlinear system into a linear one‘®. But the

method is limited to the case with a single input and

also it is difficult to compute a transformation matrix
for the complex system. To be useful in actual application,
the method has to be a simple one.

With these points in

mind, we propose a simple method which transforms the
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nonlinear system with multi-input into an equivalent pseu
do-linear system.

We consider a transient stability control of the gene-
a governor in a power system

rator with an excitor and

to confirm the effectiveness of the method.

2. Pseudo-linearized Transformation of Nonlinear Terms

Consider the nonlinear systems in which the state vec~

tor only has the nonlinearity.

x=£(x) +Bu (1)

We rewrite the nonlinear differential equation as the

following.

1= Ax+Bu+ {f(x)—Ax) (2)

vhere x is an n-th order state vector, u is an r-th order
control vector, f(x) is an n-th order vector function, A
is a linearized matrix of nonlinear function f(x) and B
is an nXr matrix.

In general, the non-zero elements of vector function
f(x) and matrix B are few. Moreover, in many cases as in
Eq(3), the row in which the nonlinear term exists is not

coincident with the one in which a control input exists.

Xi=aiXataaXat w00 tacx ot oo FaieXet oo

+3aXatf( (X)

Xe=ax1XitageXat o0 FAw Xt orc takxXxt oo taxaXatu

3)

So, we introduce a linearized transformation and transpose



the nonlinear term f,(x)into the row in which the control
input'u exists. We define a pseudo-linear variable x.*
instead of a nonlinear term in Eq.3.
KaoxXe*=a et (X) )
where k is a transformation coefficient
We replace the nonlinear term with a pseudo-linear
variable and transpose the nonlinear term from the origi-
nal row to the row in which a control input exists

Xt =aoiXaitaiaXat oo #a Kt coc taXa Tt cce HiaXa

Xk‘=aLk‘Xl+ana+ ...+€fx|+ ceetageXntt ...+a"T'x-+ ‘1‘ u
Anfi) 9 2000 L g0
kaix X bx,
(5)

Then, the nonlinear term is transposed to the k-th row

and the i-th row is pseudo-linearized. By iterations of
the procedure the whole system can be pseudo-linearized.
Then, the nonlinear terms are absorbed by the control in-

puts respectively.

3. Optimal regulator for pseudo-linear system

In this section we derive an optimal regulator for
the pseudo-linear system which is transposed from the ori
ginal nonlinear system.

Setting z=f(x)—Ax and 8= (BBT) "'B"z in Eq(2)

ve obtain Eq(6).

x=Ax+B(ut 8) (6)

Setting u*=u+ B,Eq(6) becomes an apparent linear system.

We call this linear system a pseudo-linear system.

x=Ax+Bu* )]
As the cost function we define the following
J=f { x"Qx + ( u*-B) R (u*-8) }dt (8)

Supposing the following functional Eq.9 which desc¢ribes
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the minimum value of Eq.8, we have the optimal control
input Eq. (10).

Vix, t)=x"K.x+2x"K,8+87K, 8 (9)
u=—R"B’ (K|X+K:ﬁ) (10)
Where matrices K,, K, are the solutions which satisfy

the following equations.

g—lt('+Q—K.BR"B'K1+K,A+A’Kl=0 an

a_Ka -ipT T =

at ~-KyBR'B'K;+K,B+A'K.=0 (12)
Matrix K, can be also computed by the Matrix K,.

K:= (XK,BR'B"™—A") 'K,B (13)

4. System equations of generator in power system

As a numerical example, We consider a transient stabi-
lity control to damp the electro-mechanical oscillations
associated with the transient conditions in power system.

¥e consider the next system equations of a one-machine
infinite bus mudel system in power systea.

A one-machine

infinite bus model system is given in Appendix(".

Xi=—a.,X;+a;Xatasxscos(as—X4)
X:1=—8.Xst a.Xa

Xs=—agX+asu,

X=Xy (14)

Xe=—Xs+asXs—2:(x,+as)"+ay

—ay{x.+asdcos{as— X

s=— 8, 0Xet 310X

e

X1=—a, 1 Xs+ai1U;
Replacing the nonlinear terms by the new pseudo-linear

variables we get the next equations.
X,=—8,X:+Kk,8:X:"+biXs

)'(":a“x,+a“x,'+K;BnX|.+az4X4

+a;5X|+auX|‘

)'(n.=—a|X|'+(al/ka)(Ux+,31)



)‘(4 =Xs (15)
)‘(5 :”bzXI*bzXAAXa'szanc.

Xa‘:aux1+303X2‘+354X4+355Xs

+ageXe tKidgrXs"

X f=—anx. H{a k) (u.+8a)
where
B.i= [¢2:C0-FFl1+ as{(CX-CO+ c 27X 52S1)+{c24C0
+CX+SI—= C27X5°C0)Xs+2C 27X sFF5-81
+ ¢ 25C0-FF5+ ¢ 26FF6-C0] " asa.s
B2= [(cs:00+ CorXsSI+2ds1 X+ dsaXxs"
+dgsX s)FFI+(C 200+ ds2x1)FF2
+CY'SIX;+C55FF5'CO +a,, {CY-CO
+(Cer X1+ Caa)XsSI+DX)
+(CarX 1+ Coa)SI-FFE—(Cer X1+ Cga) Xs'CO
+dges X FF5] /(a1ae7)
where
Kia;X:" =a;X:+a:XsC0—b:X5s
KsazsXs =12a,3XsTCKCO+ C27X3*SI
K,8sXe® =asXe—a.(X:1+as)’ta,
—as(X,+ag)C0+b2x+baXys

k4asvx1‘:351X1+CY‘C0+(C°1X,+Cu)XsSI+DX

FFl=—a,X,+K,a,X:"tbiXs

FFZZa;,x,+a“xz‘+kga“x,‘+éz.x4
+a,5Xstaz6Xs" —asXa"

FF5=—b.X,~bsX.— Xs+tKraesXs"

FF6=ae1 X1+ 862Xz tasaXuat BosXs
+ageXs tKiaerXs™

C0=cos(as— X4)

Si=sin(as— X4)

CX=Caz1 X1+ CraXetCasXsF+CarsXa®

CY=Cgot Cs1 X1+ Csz2X2 T CssXs

DX:duo+dslx12+duzX1Xz'*dunX1Xn

5. Numerical simulation and Discussion

Setting the constants of the machine in Fig. Al to the

following,
M=0.06 D=0.06
X¢=0.320(p. u.) X4 =0.084(p.u.)

Y., =0.266-j1.53(p.u.) Yi2=0.18+j1.08(p. u.)

To=5.0(sec) T .=0. 3(sec)
T +=0.02(sec) T e=0.04(sec)

T ¢+=0.1(sec) Ka=1.0

Kex=1.0 V=10(p.u)

Eo=X10= U:c=1.482(p. u.) &o=X.o=0.4363(p.u.)

Po=Xso=Uzo=1 5(p.u.)

we obtain the following parameter values.

a,=0.313 a.=0.404 a;=0.969
a,.=250 as=90.0 as=16.667
a7;=4.433 ag=1.482 a,=18.248
a,,=3.333 a;:1=10.0

It is assumed that the disturbance is produced by a

three phase short-circuit fault at the generator bus in
the simulations. The phase plane trajectories with no con
trol are shown in Fig.1. The critical reclosing time t.

with no control is 0.28 seconds.

(rad/sec)

t;o.iy

170 =) 2.0 3.0
X
-4.0'— t.=0.28 sec (rad)
-8.0¢

Fig.1 Phase plane trajectories

For a small disturbance a linear optimal regulator is

useful and no scheme for nonlinearity is neccessary. For

the disturbance tc= 0.3 sec a mere linear optimal control



doesn’ t stabilize the generator and power system falls

into an unstable state. However, the trajectories using

the proposed control scheme stabilizes the machine succe-

ssfully.

(rad/sec)
8.0

-

x , .
] Linear optimal control

4.0

3.0

-1.0 2.0

X
(rad)
Proposed optimal control

:

Fig. 2 Phase plane trajectories
(t.=0.3 sec)

-8.0

Trajectories for the large disturbance t.=0.6 are shown
in Fig. 8. The time responses of control inputs u, ,us; and

state variables xs, x, are shown in Fig.4. In this case

the system seems to be stable, but these situations are

only numerically successful, and are not able to be real-
ized actually, because the control inputs necessary are

over their threshold values.

(rad/sec)
12.0 ¢
Xs
6.0
2.0 \X\UJB.U
X
-6.0¢ (rad)
-12.0F

Fig. 3 Phase plane trajectory
(t.=0.6 sec)

If we set the threshold values of the control inputs, the

trajectory of x. for the disturbance tc=0.4 is a limit at

which the machine can be stabilized. It is shown in Fig.5.

2

1

]
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Fig. 4 Time responses of state variables

and control variables

The time recponses of control inputs u, ,us; and state var

jables Xs, X+ are shown in Fig.6.

(rad/sec)
15.0}

10.0

Fig. 5 Phase plane trajectory
(te=0.4 sec)

(p.

4.0

1 1

3.0 4.0 5.0
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Fig. 6 Time responses of state variables and
control variables
(-7.5Su.=7.5 0.45Su,=I165)



In the simulations we set the parameter of the pseudo-
linearized transformation to [k., kz, ka, k4] =[1,1,1,1]

If we set the parameter to [k:, ke, ks, kel = [5,5,5,5],

the trajectories coresponding to Fig.2 becomes Fig. 1.

[t is seen that the control characteristics in Fig. 7 are
improved
(rad// sec)
Xs 8.0'
4.0
: TN s s .
-1.0 1.0 3.0
a0~ x<
(rad)
-8.0}

Fig. T Phase plane trajectory (t.=0.3 sec)
[kl, kz, ks, k.] = [575v5'5]

In the next paper #e will consider the influ-ences of

the parameter k, and the problem of weight coefficients

of the matrices Q or R

5. Conclusion

In this paper we showed that a useful regulator for a
nonlinear system is obtained by using the pseudo-lineari-

zation. It may not always be possible to transform the

nonlinear term into pseudo~linear one. A phisical image

of the weight coefficients for the pseudo-variables is

also not eclear. There may be some theoretical problems in
this method. Nevertheless, It is thought that the transf
ormation proposed here is feasible in many actual systems
and that the method is useful as the regulator to stabi-

lize the system
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Appendix

A one-machine infinite bus model system used for simu-

lation study is shown in Fig.Al. State variables consist

of the internal induced voltage E,, phase angle &, rotor

speed d& /dt, turbine output power P, excitation voltage

E+4, and governor valve position X;.

N

NN\

N

Fig. Al One-machine infinite bus system
In Fig. Al, the differential equation of a generator

transient state is given as follows.

The generator output P. is given by
P.=E*Y 0088 ::+E (VY,.008(8,.-6)
where Y1126« Y12£ 6., are the admittances respect-
ively. Internal induced voltage E . and voltage behind
transient reactance E,” have the following relation.
Ei=E. + (Xa— X4 ) 14
I¢=—E(Y118in8 1~ VY, .5in(6,,—8)
where I, is a d-axis armature current and X4, Xo are

d-axis synchronous reactance and d-axis transient reac-

tance respectively.

dE.s _ _ E;q Kix
dt T, T Ty Ltee
dEiqe_ Eiuo, Ki
dt Ta  Ta

Valve opening of speed governor X,., is related by the

control input u. as the following.
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dX,, 1 1
at T, Xetr v
+Eldmll
u Ka E j90 Kex I l— Eis
1+T,5 1+TFs] ]
7Eldmln
Fig. AZ Excitor control system
+ Xevmax
u 1 1 Xy
Tay S
—Xgvmin
Fig. 3A Governor control system
Letting
x=E, X2=Eq Xs=E a0
X.=6 Xxs=dd8 dt
Xe=P X7=Xgv
we obtain
WA 1
Tk T T kT, R
— ,
+(x———-)—-”d Xg vy X 5¢05(0 12— X&)
L Kex
Xz TEX2+ TEXa
2o _ 1 Ka
X3= TAX’+TAU‘
)‘(4=X5
. VY 0, X Y, ,cos8
Xp=— 1200;[( 12 4)xl_ 11 v Ly 2
B
. 1 1
Xo:—-T‘ X.+—" Xy
- 1 1
X = T"x1+ T"uz

where k=14 (Xd—-Xd’ ) VY,,SING ...



