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Abstract

We present a parameter estimator which operates
in the domain of iteration sequence. The scheme can
be applied to identify unknown algebraic systems whose
uncertainty is parametric.

1 Introduction

We present in this note a parameter estimator for linear or
nonlinear systems whose dynamics are linear with respect to
a set of selected parameters. The estimator operates along
the iteration sequence for each fixed time, which makes it
equally applicable to time-varying system parameters as well
as time-constant parameters. This marks‘a difference from
the usual estimator which operates in the time domain[1, 3]

and mostly adequate for time-constant parameter estimation.

2 Algebraic Systems and Parameter Es-

timation

Consider the following algebraic system in which system pa-
rameters ¢(t) € R' are linearly related to the system dynam-
ics

(&) = WT()g(2), ey
where y(t) € R™ and W(t) € R™*". Each element of the
regression matrix W(t) consists of linear or nonlinear func-
tions of the system inputs, states and/or outputs. For the
given class of algebraic systems (1) it is required to find the
system parameter vector ¢(t) € R’ for t € [0,t;](t; < o)
which are time-constant or time-varying. Of numerous pa-
rameter identification methods, our approach is to estimate
the unknown system parameters along the iteration sequence
for each ¢ € [0,2;], so that time-variation in system param-
eters can be handled simultaneously and convergence of the

estimated parameters is independent of the time duration ¢;.

1. Derivation of the Estimator
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In deriving the estimator along the iteration, consider the

following index:
)= 33w W0 - OG0 - 7O,
=1

where an estimated system §7(t) at the ith iteration is given
by

N P

Pty =W ()¢'(1).

Applying the gradient descent method, we obtain the fol-
lowing learning rule for estimation of unknown parameters at

the jth iteration:
FH(t) = B'(t) + B'ST Wi ()e' (1), (2)

where e'(t) = y*(t) — §°(¢). The training factor 8 is set to be
0 < * < 2 and the scaling matrix § = S7 is positive definite.

A convergent result on the estimated system (1) is stated

as follows:

Proposition 1: The error of the estimated system converges

as follows:
i) I < T
i) lim €'(t) =0,
1=+ QO
where

70 = [ @) - F@)s6(n) - Fn)an
for all ¢ € [0,1].

Proof: Let ¢(2) = ¢(t) — ¢'(2) and let (1) = ¢+1(t)— §*(2).

Then, the estimator (2) can be rewritten as
é = B STIWIR)e(1). 3)
Further, let AJi(t) = Ji*+1(t) — Ji(). Then,

AJ(2)

[ @ wsém + 287 s )
[¢]

[ 6w s Wi
[s]



~ 28" (n)e(m))dn

= @ ()2 — FWT (1)ST W (0))el ().

Now, choose the scaling matrix S~ so that W' (£)S~1Wi(2) <
I for all t € [0,%;]. Then, it becomes

It

aFW = - [l - FWT ST Wi m)en)dn

< 0.

Hence, i) follows. Assuming boundedness of the initial pa-
rameter estimation, the nonnegative sequence {J(t)} con-
verges to a fixed value. Hence, AJi(t) — 0 as i — oo result-
ing in €'(t) — 0. Q.E.D.

The following definition of PE(Persistent Excitation) in
the domain of iteration sequence is related to convergence of
parameter estimation.

(Definition)[2]: A matrix function W¥(t) : Ry — R/
is persistently exciting along the iteration if there exist posi-
tive constants o;, o2 and a positive integer N such that

+N .
ol < STWI(OWT (1) < 0o
r=i
for t € [0,t/].
Proposition 2: The estimated parameters converges to un-
known system parameters, provided that the regression ma-

trix is persistently exciting along the iteration sequence.
lim &'(1) = ¢(t)
1—00

for t € [0, ty).

Proof: It is trivial that the estimator (2) can be written as

¢ = ¢-&
= ¢— 4 a5 Wi
= §H 4 psTIwi, (4)
and
~ e '+N
¢x+n — ¢|+N+1 +,B E S—lwrer, (5)
reitn

for 1 < n < N. Multiplying Witn=17 o1 both sides of the

parameter estimator (4) at the (i + n — 1)th jteration, we

obtain:

W(¢+n-1)T4;(.'+n) — W(l'+n-l)Tq's(€+n—])
_ /Bw(i'i-n—l)TS—lw(i-Fn—l)

e(i+n—1). (6)

Let

S;:,.l W(i+n-1)7q3(i+n—1)

il

_ /B w(itn- STIWTe"
r=f4n-1
for 1 < n < N + 1. Then, from the convergence results in

Proposition 1, it is trivial to prove that for all ¢ € [0,1/],

lim S 1=0 forl<n<N41. (0

t—o0
On the other hand, in view of (5) and (6), Sy~ becomes

SEt= WD GENH) o1 << N1 (8)

Let Sy be a finite series with N + 1 terms such that

N+1
Sy= 3 se s,

n=1

Then, we obtain from (8)
. pitN
Sy = ¢(:+N+1) Z(WrWTT)&’(I"FN-{-l]. 9)

Applying the PE condition of W' to the equation (9) leads

us to

al¢;(.’+~+1)T¢;(a+N+1) < Sy

=]
IA

az&(i+N+l)T¢§(i+N+l)' (10)

IA

Combining (10) with (7), we have lim $(t) = ¢(2). Q.E.D.
1=+00

3 Conclusion

In this note, a parameter estimator which operates in the do-
main of iteration sequence is proposed for algebraic systems.
The estimator may be used in identifying linear or nonlinear
systems whose linear parametrization reduces them to alge-

braic systems.

It can be also shown that by adjusting the gain factor in
the estimator, variations of the estimator such as Orthogo-
nal Projection, Least-Square, Ezponentially Weighted Least-
Square methods etc. are derived in the domain of iteration

sequence.
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