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ABSTRACT

The conventional sliding mode control and va-
riable structure control (VSC) of nonlinear un~
certain system are well known for their robust
property and simplity of control law. However,
the use of them is only pardonable on the assum-
ption that the upper-bound of parameter varia-
tion or nonlinearity is known and that the comp-
lete information about state is available. though
the former has been solved with adaptive robust
control theory recently, the latter seems not to
be solved. In this paper, we try to solve this
problem using the technique of VSS adaptive
robust control theory. That is, we propose a2 V3§
adaptive observer and a sliding mode control
incorporated with this observer.We can prove the
robust stability of the closed system applying
the Lyapunov’s second methed.

I. INTRODUCTION

Sliding mode control is researched quite a lot
recently for its robust property and simplity of
control law, namely it can be realized relatively
simply only know the upper-bound of nonlinearity
and/or uncertain varing parameters. However, the
use of them is only pardonable on the assumption
that the complete information about state is
available and the upper-bound of parameter vari-
ation and/or nonlinearity is known. Although the
latter can be solved with the idea of adaptive
robust control theory which identifies the
upper-bound during the control process, the
former seems not to be solved yet.

[n this paper, we try to solve this problem
using the technique of VSS adaptive robust con-
trol theory and observer theory. Firstly, we
propose a VSS adaptive observer algorithm to the
FOOTNOTES:In this paper, we means the VSS control
the cntrol method researched by Gutman® Corless®’
et al. This method is similar to sliding mode
control, lays a switching surface where the gain
is switched. However the control law doesnot
restain the state to the surface like sliding
mpde control.

system where the bound of uncertain nonlinearity
and/or parameter variation is not known, by means
of the idea of VSS robust adaptive control. Se-

condly, we realize the the sliding mode control
incorporating the state and upperbound estimated
by the observer. The stability of the closed

loop system can be proved by the Lyapunov's se-

cond method. Lastly, 1in order to verify the va-
lidity of the control method, we make a simula-
tion of a 3-state Z2-input system.

I DEFINITION & ASSUMPTION

Consider the multi-input multi-output conti-
nuous time control system
x()=Ax()+Bh(t,x)+Bu(t) (la)
y{t)=Cx(t) (1b)
where (A ,B) is controllable and (C, A) is obser-
vablee. X&€R", u€R™ yERP represent state
variable, input variable, output variable respec-
tively, A€R"™", BE€R"™, C&RP®*" are known
constant matrices. h(t, Xx)ER™ ! represent the
nonlinearity and uncertain parameter variation.
The purpose of this paper is that construct a
acaptive VSS observer which observes the state
by means of output, and realizes the sliding
mode control with the observed states and guaran-
tees the stability of the closed loop system.
Because (A, B) is controllable, for some arbi-
trary Q.>0, there exists uniquely a positive
definite and symmeiric matrix F: which satisfies
the Riccati equation.
P1A+ATP1*‘PIBBTP|+2Q|:0 (2)
Here we define A which will be used later as
switching variable coefficient ar
A&BTP, (3)
And because (C,A) is observable, there exists a
constant matrix K€ R"*® such that o [A,]€EC
where
A.=A—-KC (4)
and C” is the open left~half plane. consequently,
for some arbitrary Q=2>0, there exists uniquely
a P2>0 such that
P2A,+A."Po=-2Q2 (5
is satisfied



Consider the following three assumptions per—

taining to the system (l).
A1) There exists a matrix FE€R™ " such that

(FC.A. B)
is strictly positive real. This is the same as
that there exists P> which is the solution of
(5), such that

FC= BTP2
is satisfied'?.
A 2) For the uncertainty fi(t, x) there exists
a scalar upper-bound function p(t,y,B8)=20
which is known in form but may be unknown for
value BER¥, such that

Thit, x)llsp(t, vy, 8) (M
where ||+ | represents {2 norm, and B8 is intro-
duced to measure the size of the upper-bound p.

(6)

A 3) The function p(t, y, B) defined in assum-

ption A2) is C' and concave. that is

dp
pl(t,y,B)-po(t, y,B52(B'-89)" (8a)
8818’
where,
8p/8B
dp dp/38B-2
—2 : (8b)
3 :
9p0/388«

On the assumption above, we propose a adaptive
robust observer and realize the general sliding
mode control with states estimated in this
observer.

. ADAPTIVE VSS OBSERVER

Let the error difference between the observer
dynamics estimate and the true state be denote
by

e (t)=x (t)—x(t) (9a)
and the output difference multiplied with matrix
F be denoted by .

a()=F (y()—-y(t)

ty()2acx(t) (9b)
Consider the following nonlinear observer dyna-
mical equation.

§(t)=A°i+Ky+Bu+Ba(t. y. B) (10)

p(t.y.B) for a#0

e ll

i 0 for a =0
where B represents the estimated value of B
and follows the following adaptive algorithm.

B (1)

0
L— | _-llall
9818

1925

where L>0 is introduced to regulate the adaption
velocity. For the observer dynamics proposed in
(10). (11) the theorem 1 is satisfied.

Theorem 1. Given system (1), and the observer
dynamics governed by (10), (11). if assumptions
A1)~A3) are valid, then

lim[x{t)—x{)] =1im e(t)=0 (12)

t—x t—co

Proof: The error difference between the output
of observer and the true state can be obtained
by differentiating (9a) and inserting (1), (4),
10).

[V

e=x—X
=A.x+Ky+Bu+BS—Ax—Bh~Bu
A.e+BS5~Bh

I

a .
o(t,y.B)—Bh for a#0

lalf
(13)
A,e—Bh for a =0
In order to prove the convergency of e (t) to 0,
choose the Lyapunov function candidate about
e (t) as

o€

V()= V,(t)+Va(t) (14a)
V(t)2(1/2) e_TPze ) (14b)
Vat)2(1/2)(B—-B)TL"(B~B) (14c)

where P is the solution of (5). and L is the

same as in (11).

Diff‘erentiating Yl yields
Vi(t)=(1/2) e Pae +(1/2) eTPoe  (15)

substituting(13) to (15) and paying attention to

FC=BTPs e"C'F'=a", |a"h | =]|lallp

we have,

Vi) =(1/2) eT(P2Ao+AP2) e

PzBO! .~
-e” -p(t,y.B)—e"P2Bh
Il
=—€TQ28
C'FTa .
- ETT‘H—D (t.y.B8)—~e"C"F"h
a

=—eTQze—llallp(t,y,B)~a™h
=

~e"Qee—flaliplt,y. B)
+llallplty, B) (16a)
fqr a #0. and
Vi(t)=(1/2) e (P2A.+A."Po)e—e"P2Bh
=—e"Qze—a"h=—eTQpe (16b)
for a=0.

For the derivative of V2, differentiating V2
and inserting (11) and assumption 8a), we have

Val)=(B-8)"L"' B

. 9p
=(/9*l‘3’)T8

Splt.y.B)llall—po(t,y.8)lall (171

el
B



Combining (16), (17), obtains
V)=V, )+ Va(t)£—eTQze (18)
for all a. It is obviously a negative definite

function of e (t). Therefore,
Q. E.D.

IV. Sliding mode control
with estimated states

Here we construct the sliding mode control sys-
tem with state and upper-bound estimated in the
observer (10), (11).

Let the switching surfaces be defined as
s(t)2Ax(t)
where matrix A is defined in (3).
The sliding mode control law is constructed as
follows.

(19)

. . s
kil xll+p(ty, B)]— (20)

u(t

W sl

tk>[(AB) 'AA]

It should be noted that it becomes the same as
usual sliding mode control law when B is repla-
ced by true value B and X by true value x (t).

When control law (20) is used, next theorem is
satisfied.

Theorem 2. Given
law (20) with X, A8
observer (10), (11).

system (1) and the control
estimated in adaptive VSS
if assumptions Al)~A3) are

valid, the closed loop system is asymptotic
stable. that is
lim [x{(t)—x)] =1im e(t)=0 (21)
t - t >0
l1im x{#) = 0 (22)
t >
Proof: It is obvious that if x.e—0 are gua-
ranteed, then (21), (22) are satisfied. In order

to see the stability of the closed loop system,
choose the Lyapunov function candidate about e,
X, B as

V) =Vo(t)+7 Vi i(t)+7 1 Valt) +72Va(t)
(23)
where 7 :, v 2>0 are some positive constants and
how to choose them will be shown later. Vo(t).
V. (t), Va(t), Vs(t) are part Lyapunov function
candidate respectively shown as follows.

Volt)=(/)xTP X (24a)
Vi(t)=(1/2) e "Pze i (24b)
Va(t)=(1/2)(B—B)TL™ (B~ B) (24c)
Va(t)=(1/2) sT(AB) 's (24d)

Let us differentiate V: respectively.
For Vo, from (24a), (2), (4), (10), we have

Vo0 =(/D X TP X+ (I/DX P x
=(1/2){A.x+Ky+Bu

e(t)—0 (t—o) .

1926

p(t.y.B) 1TPix

Il all
+(1/2)XxTP [A.x+Ky+Bu
B (t . B) ]

Il el

=/ [Ax—KCe+Bu

a . .
p(t, vy, B)] TP, x
el

+{/)x"P,[Ax—KCe+Bu

o .
ot y, B8)]
. Itall .
=(1/2)XT(~P1A+ATP17PIBBTPI)X
+(1/2)XTP]BBTPIX
-xTP,KCe+x"P,Bu

—B

—p(t,y,B)x"P,B (25a)

el
from (3), (19), wve have x"P BBTP , x =sTs =
sTA X, thus
Vo()=—xTQix+(1/2) sTAx —x"P,KCe
[kl xll+p(ty,B8)1I sl

o(t. v, B)
| e |l

S—2Amia(QD) I x 117
VIR EYEY _
+II P KCIxflefl—kllsllIx]
(25b)
where A min{Q:) represents the minimum eigen-
value of Q.
About Vi, Vo, we can use the results of (16),
(1.7), the following inequalities are satisfied
Vi)s—e"Qze—llallplt,y. 8)
+llallelty,B)
S-2Aain{Q2) e ll®
. —llalileo(t vy, B)—pn(t y, B)] (26)
Va)sllalllolt,y.B)—p(t.y, 8)] @D
lastly for Vs, translating same as (25), we have
Va(t)=sT(AB)'s
=sT(AB)'A[Ax—KCe+Bu

—3sT

a -
—B p(t,y, B)]
Il a i )
=sT(AB)'AAx—sT(AB)"'AKCe

FsTu-sT——p(ty, B)
all

=sT(AB)"'AAx—sT(AB)'AKCe
—Isitkllxl+o(t y.8)]

a .
-sT ot y.B8)
Iall

S—[k={(AB) ' AANTNs I x I
+HATAB) PAKCH Il x Il el (28)



Substituting th.e above .results .into \7, yields
\./=\'/o+7xV|+7‘1V2+72V3
S—Aaia QD) NI x 2+l P KCH
+72lAT(AB)TTAKCID I x il T el
—71dnia(Q2) 1l e I?
— [ra(k=1I(AB)TAA
+k=lAazzl] IxHilsll
Here if 7o is choosed as

max{0, /| A/2]l —k)
72> (30a)
(k—1I(AB)'AA)

the last term of (29) becomes nonpositive. and
if ¥, is choosed
(P KCll+7=2llAT(AB) 'AKC)?

420:i0(Q1) Amin(Q2)

(29)

7

.........

(301)
the first three terms of (29) become negative
about X. e (refer to supplement). Therefore the

total of (28) becomes negative definite to e, X.
so that e (t)—0, x—0, x{t)=x(t)—e (t)—0.

namely the combined system is asymptotic stable.
Q. E.D.

Note that although we can not guarantee that
[9 converge to the true value of B, because the
convergency of e, X is guaranteed, our purpose
is attained.

Moreover, because that tne control law is dis-
continuous in the vicinity of s=0,it may become
the cause of chattering and may excite high-
frequency neglected in the course of modelling.
The basic way to avoid this is to alter the con-
trol law (20) to follows such that the inputs
become continuous.

. . S
[kl xll+p(t v, B)]—

for || s |i zsa (31a)
u(t)= {

Ikl x40ty B)—
E

for || s lI<e (31b)

V. EXAMPLE AND SIMULATION

A simulation has been made to assure the vali-
dity of the observer and the contol law. Systenm
(1) is considered with

2 4 0 1 1
A= |3 -5 0 B= |1 —1

2 0 —4 2 0

1 1 0
C:

1 -1 0

Bisinxa+ B2(x 12— x23)
h(t, x)= (32)
Ba{x %+ x2%)

1927

B1>0, B2>0 represent the uncertain parameters.
Because A is unstable, feedback gain K is cho-

sen as
4 0 -2 0 0
[0 3J A= [ 0 —2 0
1 1 0 0 —4
such that A, is stable. When Q2 in Lyapunov

K

(33)

equation (5) is selected as follows , P2 can
be obtained
4 2 —3 2 1 -1 :
Qz=| 2 4 -3 Po=| 1 2 -1 (34)
-3 -3 4 -1 -1 1

It is obvious that assumption Al) is satisfied
with F=1.
Because
fhilsgi+B2(lyl+lya)?/2 (35)
the upper-bound function o can be choosed as
e= Bi1+B20y:1+1y2)?/2 (36)
where the uncertain parameters B, B2 can be
used as the upper-bound parameter as they are.
Do like this the parameter adaptive algorithm
(10) becomes

Bi=Lillall (37a)

Ba=La(yil+lyz2D)2llall/2 (37b)
For the Riccati equation (2), when Q. is selec—
ted as follows, P can be obtained as

.50 0 3.65 1.77 -0.42
Q=0 1 0| P,=|1.77 1.00 -0.25| (38)
0 0 2 -0.42 -0.25 0.49

so that from (3), switching variable coefficient
4.58 2.30

becomes
0. 30
1.89 0.74 -0.17

In the simulation, the values B ,=1, B2=2 are
put. and the values of coefficients of control
side are put as

A=BTP,= [ (39)

Li=1, Lz=1, k=174 (40)
So the control input u becomes
u=—| 7.~4|| x|+ 8
+B82(ly I +iyv2D)8/2 s/ sl (1)

The simulation results are shown in Fig. 1~Fig. 8.
Fig. 1~Fig. 4 show the results when standard
control law is used. Fig.5~Fig. 8 show the
results when approximate one is used, where

g =0.8.

From Fig. 2, Fig. 6 we can see that although B
failed to reach the true value B, because the
control object is achieved, it is of course the
expecting thing. Where B will converge would be
left as the theme hereafter.

V. CONCLUSION
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The conventional sliding mode control is based
on the assumption that state feedback is possi-
ble and that the upper-bound of uncertainty is
known. For this, in this paper we present a ada-
ptive VSS observer which estimate the states
while the upper-bound parameter of uncertainty
is identified. And realized the usual sliding
mode control with the observed states. The sta-
bility of the closed system is assured by Lyapu-

1929

nov's second method and simulation.

SUPPLEMENT
The first three terms of (29) can be expressed
in the form of )
J=—alx(I?2~bllell?+2cixil Il ell (AD
vhere
azlmln(Ql) b=7llmin(Q2)
c=[lIP\KCI+72ll AT(AB)"'AKCIl1/2
if a>0, b>0, c?<ab (A2)
is satisfied, J<0 when x#0,e+#0, and J =0
wvhen x =e=0. namely J is negative definite.
From condition (A2), (30b) can be obtained
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