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Abstract: Path planning is an important task
for optimal motion of a robot in structured or unstruc-
tured environment. The goal of this paper is to plan the
shortest collision-free path in 3D, when a robot is navi-
gated to pick up some tools or to repair some parts from
various locations. To accomplish the goal of this paper,
the Path Coordinator is proposed to have the capabilities
of an obstacle avoidance strategy [3] and a traveling sales-
man problem strategy (TSP) [23]. The obstacle avoidance
strateqy is to plan the shortest collision-free path between
each pair of n locations in 2D or in 3D. The TSP strat-
egy is to compute a minimal system cost of a tour that is
defined as a closed path navigating each location exactly
once. The TSP strategy can be implemented by the Neu-
ral Network. The obstacle avoidance strategy in 2D can
be implemented by the VGraph Algorithm. However, the
VGraph Algorithm is not useful in 3D, because it can’t
compute the global optimality in 3D. Thus, the Path Co-
ordinator is proposed to solve this problem, having the
capabilities of selecting the optimal edges by the modified
Genetic Algorithm [21] and computing the optimal nodes
along the optimal edges by the Recursive Compensation
Algorithm [5).

1 Introduction

In many path planning algorithms, attempts are made to
optimize the path between the start and the goal in terms
of a Euclidean distance. The goal of this paper is to plan
the shortest collision-free path in 3D, when a robot is nav-
igated to pick up some tools or to repair some parts from
various locations. In this paper, a Plaaning Coordinator
is proposed to do this goal. To develop theories on the
Planning Coordinator [4], the following assumptions are
made:

o The obstacles are stationary polyhedral objects.
o A navigating robot is a polyhedral object.

e A system’s cost function to be optimized is a Eu-
clidean distance.

A navigating robot is shrunk to a configuration point
in the Configuration Space (2], while the stationary obsta-
cles are expanded to fill all space whenever the presence of
a configuration point would imply a collision of the navi-
gating robot with obstacles. Therefore, the path planning
algorithm [17] can be formulated as a graph searching
problem. The graph is formed by connecting all pairs of
visible vertices. This is the well known VGraph Algorithm
for calculating the shortest collision-free path.
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To accomplish this goal, a Planning Coordinator must
calculate the shortest collision-free path between each
pair of the various locations. The VGraph Algorithm is
useful since it can compute the global optimal path be-
tween each pair of the n locations in 2D.

Because the VGraph Algorithm cannot compute the
global optimal path, the VGraph Algorithm cannot be
directly applied for the previous subtasks. The VGraph
Algorithm is not effective in view of the fact that the
VGraph Algorithm cannot compute the global optimality
in 3D. Instead, a robust algorithm is needed to solve the
optimal path between each pair of the n locations in 3D.
Since the optimal path in 3D may involve going through
points on the optimal edges, a robust algorithm should
have the capability of solving the following two problems:

o The first problem is how to select the optimal edges.

o The second problem is how to find the optimal nodes
on the optimal edges.

The global optimality of the Recursive Compensation
Algorithm is proved for 3D convex objects and the Plan-
ning Coordinator is implemented by using the Recursive
Compensation Algorithmn. While the modified Genetic
Algorithm finds the optimnal edges, the Recursive Com-
pensation Algorithm calculates the optimal vertices along
the optimal edges. The Recursive Compensation Algo-
rithm can be applied to compute the cost function for the
modified Genetic Algorithm.

The Genetic Algorithm (GA) may be used to find the
optimal edges. However, the Genetic Algorithm does not
always guarantee global optimality, since the Genetic Al-
gorithm may converge to the local minima [9]. Therefore,
a robust algorithm is needed to guarantee the global op-
timality. The modified Genetic Algorithm (MGA) used
to find the optimal edges in the Planning Coordinator
has been proved to converge in probability to the global
minimum of the cost function [21].

Finally, the Neural Network is applied to a case of a
mapping process to solve the TSP with the 3D obsta-
cles. Most of the TSP problems have heen solved in 2D.
However, a robot could visit some locations to pick up
some tools or repair some parts in deep sea, in space or
on the earth. To solve the TSP with the 3D obstacles,
a mapping mechanism is needed to compute the short-
est path between two locations. If a location is visible
to another location, then a straight line between the two
locations is the shortest distance. If a location is not visi-
ble to another location, then obstacle-avoidance strategy
is needed to calculate the shortest distance between the
two locations.



2 Modified Genetic Algorithm

[Problem Statement: where no information on the op-
timal edges is known. ] R

Solve the TSP of 10 locations with the polyhedral ob-
stacles, assuming that A = B = 50, C = 20, D =
50, ug = 0.02, n = 15, and 7 = 1 [23]. Calculate
the shortest path from the L; node to the L; node, as-
suming that the obstacles are polyhedrons and no opti-
mal edges are known. Suppose that the polyhedral, L;
node and L; node are represented by the following ver-
tices; Pi(3,1,-3), P2(2,1,-3), P5(2,3,-3), P4(8,3,-3),
P5(8,1,5), Ps(2,1,5), P:(2,3,5), P%(8,3,5), L;(3,0.5,0.5),
L;(3.5,4,3).

(Solution) Most of the TSP problems have been solved
in 2D. However, a robot could visit some locations to
pick up some tools or repair some parts in deep sea,
in space or on the earth. To solve the TSP with the
3D obstacles, a mapping mechanism is needed to com-
pute the shortest path between two locations. If a lo-
cation is visible to another location, then the straight
line between two locations is the shortest distance. If a
location is not visible to another location, then obstacle-
avoidance strategy is needed to calculate the shortest dis-
tance between two locations. Suppose that the polyhe-
dral and Locations are represented by the following ver-
tices; P1(8,1,=3), P4(2,1,-3), P3(2,3,-3), P4(8,3,-3),
P5(8,1,5), Ps(2,1,5), P»(2,3,5), P(8,3,5), L;(3,0.5,0.5),
L;(3.5,4,3). The modified Genetic Algorithm [21] up-
dates the information on the optimal edges at each gener-
ation, according to the fitness of the cost function. Since
the modified Genetic Algorithm reproduces its population
for each generation, the modified Genetic Algorithm needs
a fast function in order to evaluate the fitness. So the Re-
cursive Compensation Algorithm is applied to compute
the fitness function. I set the following parameters; size
of population = 20, length of chromosome = 12, maxi-
mum # of generation = 10, probability of crossover =
0.7, probability of mutation = 0.02, fitness function =
Dfitneas/DRCA X ]00%, where Dflme“ = 0.5519 x 10 and
Dpca = distance computed by the Recursive Compen-
sation Algorithm according to information on the chro-
mosome. To construct the chromosome, I set e;, ¢ =
1,2,---,12 as the edges of a polyhedral; ¢; = P\ P;, e3 =
PP, e5 = PPy, ey = PPy, 65 = PiPs, es = P,Fs,
er = P3Py, e :])4P8s€9:755769610:1j6p77 €11 :m,
erz = Ps Ps.

The Tables show that the optimal edges are e and e.
The optimal vertices are Ny along eg and N, along ¢; and
the shortest path between L; and L; 15 0.5519453549 % 10;

Ny = (2.0,1.0,1.0682)
N, = (2.0,3.0,2.0842).

The optimal population ratio (opt) is defined by

number of optimal population in a generation

x 100%,

population size in a generation

Figure 1 shows that the modified Genetic Algorithm con-

Table 1: Generation 0 by the Modified Genetic

Algorithm
# | parents | loc. edges distance | o.p.r.
17(0,0) | 0 |111100000000 | 1.599E+401 | 35 %
21(0,0) | 0 |00000L100010 | 1.078E+01 | 51 %
3 1(0,0) 0 | 100010011000 | 1.939E+01 | 28 %
4 1(0,0) 0 | 100010010000 | 1.337E+01 | 41 %
5 1 (0,0) [ 0 |000010010000 | 1.190E+01 | 46 %
6 | (0,0) | 0 |010100000000 | 8.778E+00 | 63 %
70 (0,0) | 0 [000010010000 | 1.190E+01 | 46 %
8 1 (0,0) { 0 |000010011000 | 1.505E+01 | 37 %_
91 (0,0) | 0 |000000001101 | 1.503E4+01 | 37 %
10 (0,0) | 0 000000000101 | 1.163E+401 | 47 %
111 (0,0) | 0 |001001100010 | 1.461E4+01 |38 %
121 (0,0) | 0 | 010100000000 | 8.778E400 | 63 %
13| (0,0) | 0O |000000001111 | 1.757E4+01 | 31 %
141 (0,0) | 0 001001100010 | 1.461E+01 | 38 %
15| (0,0) | 0 |110100000000 | 1.325E+01 | 42 %
16| (0,0) [ 0 |000001100010 | 1.078E401 | 51 %
171 (0,0) 0 1000010010000 | 1.190E+01 | 46 %
18 (0,0) 0 | 010100000000 | 8.778E+00 | 63 %
191 (0,0) | 0 |100010011000 | 1.939E+01 | 28 %
(0,00 | O

000010011000 | 1.505E+01 | 37 %

Table 2: Generation 2 by the Modified Genetic

Algorithm
[ # T parents [ loc. edges distance | o.p.r.
(L[ (718) | 9 {000001100010 | 1.078E+01 | 51 %
21 (7,18) | 9 |000010011000 | 1.505E+01 | 37 %
3 | (4,11) | 12 | 010100000000 | 8.778E+00 | 63 %
4 | (4,11) | 12 1001001100010 | 1.461E+01 | 38 %
5 (17,6) | 8 | 001001100010 | 1.461E4+01 | 38 %
6 | (17,6) | 8 |000001100010 | 1.078E+01 | 51 %
7 1(10.17) { 1 | 000001100010 | 1.078E+01 | 51 %
8 | (L,1) | 12 | 010100000000 | 8.778E+00 | 63 %
9 | (14,14) | 12 | 010100000000 | 8.778E+00 | 63 %
10 | (14,14) { 12 | 010100000000 | 8.778E+00 | 63 %
11 (17,5) | 1 | 010100000000 | 8.778E+00 | 63 %
12| (17, 5) | 1 {000001100010 | 1.078E+01 | 51 %
13§ (11, 8) { 10 | 001001100010 | 1.461E4+01 | 38 %
14 | (11, 8) | 10 | 000010010000 | 1.190E+01 | 46 %
151 (17,13) | 9 | 000001100000 | 5.519E-+00 | 100 %
16§ (17,13) { 9 | 000010010000 | 1.19Gi 101 | 46 %
17 | (16,12) | 12 | 000010910000 | * it 4+0l | 46 %
18 | (16,12) | 12 | 010100660000 | 8.778E+00 | 63 %
191 (7,4) | 12 | 000001100010 | 1.078E+01 | 51 %
20 | (7,4) | 12 | 010100000000 | 8.77SE+00 | 63 %

verges to the global optimality, while the Genetic Algo-
rithm converges to a local minima. Figure 2 shows the
initial state in the Neural TSP and Figure 3 shows the
final state in the Neural TSP.



Table 3: Generation 4 by the Modified Genetic

Table 5: Generation 8 by the Modified Genetic

Algorithm Algorithm
# | parents | loc. edges distance | o.p.r. # | parents | loc. edges distance | o.p.r.
1 [ (11,20) | 12 | 010100000000 | 8.778E+00 | 63 % 1| (18,1) | 12 | 000001100000 | 5.519E+00 | 100 %
2 | (11,20) | 12 | 000001100010 | 1.078E+01 | 51 % 2 | (18,1) | 12 | 0600001100000 | 5.519E+00 | 100 %
3| (4,8) | 12 | 010100000000 | 8.778E+00 | 63 % 3|(7,5 | 2 |000001100000 | 5.519E+00 | 100 %
4| (4,8) | 12 | 000001100000 | 5.519E400 | 100 % 41 (7,5 | 2 |000001100000 | 5.519E+00 | 100 %
5| (8,1) | 12 | 000001100000 | 5.519E+00 | 100 % 5 | (2,10) | 9 | 000001100000 | 5.519E+00 | 100 %
6 | (8 1) | 12 | 010100000000 | 8.778E+00 | 63 % 6 [ (210) | 9 |[000001100000 | 5.519E400 | 100 %
71 (5,3) | 10 | 010100060000 | 8.778E+00 | 63 % 71 (L 1) | 1 |000001100000 | 5.519E+00 | 100 %
8 | (5,3) | 10 | 010100000000 | 8.778E+00 | 63 % 8 | (10, 7) | 12 | 000001100000 | 5.519E+00 | 100 %
9 | (818) | 5 | 010100000000 | 8.778E+00 | 63 % 9 | (815) | 3 |010100000000 | 8.778E+00 | 63 %
10| (8,18) | 5 | 000001100000 | 5.519E+00 | 100 % 10| (8,15) | 3 | 010100000000 | 8.778E+00 | 63 %
11§ (8,8 | 11 |{000001100000 | 5.519E+00 | 100 % 11| (10, 6) | 12 | 000001100000 | 5.519E+00 | 100 %
12 | (20,20) | 12 | 000001100010 | 1.078E4+01 | 51 % 12 | (10, 6) | 12 | 000001100000 | 5.519E+00 | 100 %
13| (18,11) | 9 | 010100000000 | 8.778E+00 | 63 % 13 | (12,11) | 7 | 000001100000 | 5.519E+00 | 100 %
14 | (18,11) | 9 | 010100000000 | 8.778E+00 | 63 % 14 | (12,11) | 7 | 000001100000 | 5.519E+00 | 100 %
15| (8,17) | 6 .| 001001100000 | 8.167E+00 | 68 % 15 | (20,11) | 12 | 000001100000 | 5.519E+00 | 100 %
16 | (8,17) | 6 | 000001100010 | 1.078E+01 | 51 % 16 | (20,11) | 12 | 000001100000 | 5.5195++00 [ 100 %
17| (4,8) | 2 | 000001100000 | 5.519E+00 | 100 % 17| (2,6) | 11 | 000001100000 | 5.519E+00 | 100 %
18| (4,8) | 2 | 010100000000 | 8.778E-+00 | 63 % 181 (2,6) | 11 | 000001100000 | 5.519E+400 | 100 %
19 | (12, 3) | 11 | 000001100000 | 5.519E400 | 100 % 19§ (11,5) { 1 | 000001100000 | 5.519E+00 | 100 %
20 | (12, 3) | 11 | 01°.:0000000 | 8.778E+00 | 63 % 20| (11,5) | 1 000001100000 | 5.519E+00 | 100 %
Table 4: Generation 6 by the Modified Genetic Table 6: Generation 10 by the Modified Genetic
Algorithm Algorithm
# | parents | loc. edges distance | o.p.r. # | parents | loc. edges distance | o.p.r.
1 | (12,17) | 12 | 000001100C00 | 5.519E+00 | 100 % 1 [ (10,9) | T ]000001100000 | 5.519E+00 | 100 %
2 | (12,17) | 12 | 010100000000 | 8.778E+00 | 63 % 2| (10,9) | 1 |000001100000 | 5.519E+00 | 100 %
31 (16,1) | 2 | 000001100000 | 5.519E+00 | 100 % 3 | (7,15) | 12 | 000001100000 | 5.519E+00 | 100 %
4 | (16,1) | 2 | 010100000000 | 8.778E+00 | 63 % 4 | (7,15) | 12 | 006001100000 | 5.519E+00 | 100 %
51 (8,6) | 4 |010100000006 | 8.778E+00 | 63 % 5 | (14,11) | 12 | 000001100000 | 5.519E+00 | 100 %
6 | (8 6) | 4 |010100000000 | 8.778E+00 ; 63 % 6 | (14,11) | 12 | 000001100000 | 5.519E400 | 100 %
7| (7,18) | 12 | 000001100000 | 5.519E-+00 | 100 % 7 1(716) { 7 |000001100000 | 5.519E+00 | 100 %
8 | (7,18) | 12 | 010100000000 | 8.778E+00 | 63 % 8 1 (7,16) | 7 |000001100000 | 5.519E+00 | 100 %
9 | (19, 3) | 12 | 000001100000 | 5.519E+00 | 100 % 9 | (14,15) | 12 | 000001100000 { 5.519E+0C0 | 100 %
10 | (19, 3) | 12 | 000001100000 | 5.519E+00 | 100 % 10 | (14,15) | 12 | 000001100000 | 5.519E+00 | 100 %
11| (3,9) | 12 | 000001100000 | 5.519E+00 | 100 % 11| (11,1) | 10 | 000001100000 | 5.519E+00 | 100 %
12| (3,9) | 12 | 000001100000 | 5.519E+00 | 100 % 12| (11,1) | 10 | 000001100000 | 5.519E+00 | 100 %
13| (1,1) | 12 | 000001100000 | 5.519E+00 | 100 % 13 | (14,19) | 12 | 000001100000 | 5.519E400 | 100 %
14 [ (13,11) | 1 | 000001100010 | 1.078E+01 | 51 % 14 | (14,19) | 12 | 000001100000 | 5.519E+00 | 100 %
15| (1,7) | 10 | 000001100000 | 5.519E+00 | 100 % 15| (14, 8) | i2 | 000001100000 | 5.519E+00 | 100 %
161 (1,7) | 10 | 000001100000 | 5.519E+00 | 100 % 16 | (14,8) | 12 | 000001100000 | 5.519E+00 | 100 %
17 | (12,19) | 5 | 000001100000 | 5.519E4-00 | 100 % 17| (11, 8) | 12 | 000001100000 | 5.519E+00 | 100 %
18 | (12,19) | 5 | 000001100000 | 5.519E+00 | 100 % 18| (1,1) | 12 | 000001100000 | 5.519E+00 | 100 %
19| (7,2) | 12 | 000001100000 | 5.519E+00 | 100 % 19| (13,4) | 12 | 000001100000 | 5.519E+00 | 100 %
20 | (7,2) | 12 | 000001100000 | 5.519E+00 | 100 % 20 | (13, 4) | 12 | 000001100000 | 5.519E+00 | 100 %
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Figure 1: A Comparison between MGA and GA
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Figure 3: Final State in the Neural TSP
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3 Conclusions

First, the Recursive Compensation Algorithm was applied
to a case where information on the optimal edges is avail-
able and no global search is necessary. Comparing the
efficiency of the algorithm when the accuracy, e, is set
to 107°, the Branch and Bound Method needs 0.230 x
107 milliseconds, while the Recursive Compensation Al-
gorithm needs only 0.416 x 10® milliseconds on a VAX-
11/750. A Euclidean distance obtained by the Recursive
Compensation Algorithm is 48% less than that obtained
by the VGraph Algorithm. Since the accuracy is defined
by ¢ whose value is set to be very small and n is the
number of polyhedral obstacles, Lozano-Pérez’s Modified
VGraph Algorithm needs a lot of memory space tq store
(2+8xn x e7!) vertices for the VGraph, while the Recur-
sive Compensation Algorithm needs a small memory space
to store (2 + 8 x n) vertices for the VGraph. Simplifying
the VGraph, the Recursive Compensation Algorithm can
save not only the memory space to represent the VGraph
but also the graph-searching time.

Second, the Neural Network is applied to a case of a
mapping process to solve the TSP with the 3D obstacles.

Finally, the Recursive Compensation Algorithm was
also applied to a case where no information on the op-
timal edges is available. However, the Recursive Com-
pensation Algorithm requires information on the optimal
edges to get the optimal solution. The exhaustive search
algorithm guaraniees the optimal edges for the shortest
path. [t may be applied to find the globally optimal
edges for the shortest path in the workspace that has
less than 4 obstacles. However, it is not an adequate al-
gorithm to find the optimal edges for the shortest path
in the workspace that has many obstacles, since it needs
the exponential search time. For (4 ~ 10) obstacles, the
Moditied VGraph algorithm is suggested. This algorithm
generates some additional vertices along the edges of the
grown obstacles so that no edge is longer than @ prespec-
ified maximum length. Iowever, it is not easy to de-
cide how many vertices should be added along the edges
of the grown obstacles and the additional vertices need
much more computation time. If there are a lot of ob-
stacles in a workspace, this algorithm is not adequate,
because it needs a lot of memory space to represent the
additional vertices which will result in more computation
time. The modified Genetic Algorithm is useful to find
the optinal edges for the shortest path in the workspace
that has many obstacles. Figure 1 shows tlint the modi-
fied Genetic Algorithm converges to ttie pl-hai optimality,
while the Genetic Algorithm converges to a local minima.
While the modified Genetic Algorithm finds the optimal
edges, the Recursive Compensation Algorithm calculates
the optimal vertices along the optimal edges. The Recur-
sive Compensation Algorithm works to compute the cost
function for the modified Genetic Algorithm.

4 Future Work

There are many interesting problems deserving further
research for CIM environment. Below some of them are
listed in no particular order.



Solve the collision-free path planning for the dy-
namic obstacles.

Exchange the knowledge on the path planning with
other coordinators for an intelligent robot.

Consider the general polyhedral objects for the col-
lision free shortest path.

Consider not only a Euclidean distance but also
time or energy as a system cost function.

References

1]

=

6

(7

(8

(9

(10]

Aarts, E. and Korst, J., “Simulated Annealing and
Boltzmann Machines,” John Wiley & Sons, New
York, 1989.

Brooks, Rodney A., “Planning Collision-Free Mo-
tions for Pick-and-Place Operations,” The Interna-
tional Journal of Robotics Research, Vol. 2, No. 4,
Winter 1983, pp. 19-44.

Chung, C. H. and Saridis, G. N., “An Obsta-
cle Avoidance Motion Organizer for an Intelligent
Robot,” RAL-TR-838-117, Rebotics and Automa-
tion Laboratory, Rensselaer Polytechnic Institute,
Troy, New York, 12180-3590.

Chung, C. H. and Saridis, . N, “Obstacle Avoid-
ance Path Planning by the Extended VGraph Al-
gorithm,” CIRSSE-TR-89-12, Center for Intelligent
Robotic Systems for Space Exploration, NASA,
Jan. 1989.

Chung, C. H. and Saridis, G. N., “The Recurstve
Compensation Algorithm for Obstacle Avoidance
Path Planning,” IEEE International Workshops on
Intelligent Robots and Systems, Tsukuba, Japan,
Sep. 1989.

Chung, C. H. and Saridis, G. N., “Path Planning
for an Intelligent Robot by the Extended Vgraph
Algorithm,” IEEE International Symposium on In-
telligent Control, Albany, NY, Sep. 1989,

Chung, C. H. and Saridis, G. N., “Recursive Com-
pensation Algorithm for Collision Free Path Plan-
ning,” IEEE Transactions on Systems, Man and
Cybernetics (submitted).

Cuykendall R. and Reese, R., “Scaling the Neural
TSP Algorithm,” Biological Cybernetics, Vol. 60,
pp. 365-371, 1989.

Goldberg, David E., “Genetic Algorithms in Search,
Optimization, and Machine Learning,” Addison-
Wesley Publishing Company, INC., Reading, Mas-
sachusetts, 1989.

Hart, P. and Nilsson, N. J. and Raphael, B. A.,
“A Formal Basis for the Heuristic Determination
of Minimum Cost Paths,” IEEE Trans. Syst. Sci.
Cybernetics, Vol. SSC-4, No. 2, July 1980, pp. 100-

1943

(11]

(12]

(13

(14]

(15]

[16]

(17]

18]

(19]

(20]

(21]

22)

(23]

107.

Hinton, G. E. and Sejnowski, T. J., “Learning and
Relearning in Boltzmann Machines,” pp. 282-317,
in D. E. Rumelhart and J. L. McClelland (Eds.),
Parallel Distributed Processing: Ezplorations in the
Microstructure of Cognition. Vol. !:Foundations,
MIT Press, 1986.

Hopfield, J. J., “Neural networks and physical sys-
tems with emergent collective computational abili-
ties,” Proc. Natl. Acad. Sci. USA, Vol. 79, pp. 2554-
2558, April 1982.

Hopfield, J. J., “Neurons with graded response
have collective computational properties like those
of two-state neurons,” Proc. Natl. Acad. Sci. USA,
Vol. 81, pp. 3088-3092, May 1984,

Hopfield, J. J., “Neural Computation of Decisions
in Optimization Problems,” Biological Cybernetics,
Vol. 52, pp. 141-152, 1985.

Hopfield J. J. and Tank, D. W., “Computing with
Neural Circuits: A Model,” Science, Vol. 233, pp.
625-633, August 1986.

Lawler, E.L and Lenstra, J. K. and Rinnooy Kan,
A. H. G. and Shmoys, D. B., “The Traveling Sales-
man Problem,” John Wiley & Sons, New York
1936.

’

Lozano-Pérez Tomds, “Automatic Planning of Ma-
nipulator Transfer Movements,” IEEE Trans. Sys-
tems, Man, and Cybernetics, Vol. SMC-11, No. 10,
October 1981, pp. 681-698.

Luenberger, David G., “Linear and Nonlinear Pro-
gramming,” Addison Wesley Publishing Company,
Reading, MA, 1984.

Maudlin, M. L., “Maintaining Diversity In Genetic
Algorithm,” Proc. National Conference on Artifi-
cial Intelligence, 1984, pp. 247-250.

Moed, M. C. and Saridis, G. N., “A Boltzmann Ma-
chine for the Organization of Intelligent Machines”,
Proceedings of 2 Telerobotics Conference, Pasadena,
CA, Jan. 1989,

Moed, M. C., “The Organizer: Planning Tasks
With An Emergent Connectionist/ Symbolic Sys-
tems,” CIRSSE-TR-89-42, Center for Intelligent
Robotic Systems for Space Exploration, NASA,
Sep. 1989.

Saridis, G. N., “Expanding Subinterval Random
Search For System Identification And Control,”
IEEE Transactions on Automatic Control, 1979,
pp- 405-412.

Wilson, G. V. and Pawley, G. S., “On the stabil-
ity of the travelling salesman problem algorithm of
Hopfield and Tank,” Biological Cybernetics, Vol. 58,
pp. 63-70, 1988.



