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ABSTRACT

Conflicting or inconsistent rules sometimes help us to
represent the control actions of an expert more freely.
Also, uncertainties about the control actions of the expert
may render rules with conclusions whose membership func-
tions have different width in their shapes. Conventional
inference methods for FLC may not effectively handle such
inconsistencies and/or rules containing such conclusions. In

this paper, an effective inference method dealing with such

If-Then rules is proposed.

I. Introduction

In representing control actions of an expert for a plant
with fuzzy If-Then rules, there can be a situation in which
rules are conflicting with each other[1][2]. For example,
when the rule base originates from different sources of evi-
dence or when we want to satisfy multiple objectives but
can only obtain groups of rules with each group being
designed to satisfy only one objective, inconsistent rules can

be present|3].

Recall that, even if there are conflicting or inconsistent
rules, the inference engine can run to fire rules at the same
time with maximum compatibility if such inference method
of Mamdani[4] is used. If two rules are fired -as in Figure
1, the output value of the Mamdani’s FLC is biased near
The quite abour one can be

the more or less abour three.

considered to be more certain term than the more or less

Zn

abour three. We call this odd situation as a far shape

domonant phenomenon. Note that

many conventional
FLCs[5][6] contains such characteristics. It is our common
understanding that certain conclusions should influence more

on the output of the FLC than uncetain conclusions. In this

paper, we first explain inconsistent rules, and then we pro-

pose an inference method that in which the above
phenomenon does not occur.
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R1) I u is big Then u is quite about one

R2) If wis big Then u is more ar fess about three

Fig.1. Fat shape dominaut phenomenon.

II. Inconsistent rules

We define the inconsistent rules rather "fuzzily” as

multiple  rules which  have

"considerably"  different
consequents(Then-parts) but have “considerably” overlapped

domains partitioned by the antecedents(If-part) of the rules.

In the If-Then rules. suppose the antecedents contains
n variables while the consequents have only one variabie.
Then the If-Then rules can be considered as a kind of

look-up table tepresenting a function f: R ~ R. Classical



If-Then rules can be thought as a look up table that have
precise boundaries, whereas fuzzy if-Then rules can be
thought as a table that has

look-up ambiguous

boundaries(see Figure 2). If we add a rule to the four con-
sistent rules in Figure 2 as shown in Figure 3, the five rules
can be considered to be inconsistent rules because their par-
titions by the antecedents are ovelapped. Therfore, incon-

sistent rules can be thought as a look up table whose parti-

tions are laid to overlap with each other.

Inconsistent rules can be used as an alternative means
to represent a control action. For example, the inconsistent
rules of the R1 and R2 can be considercd to yield a rule
approximately equal to the R3.

R1) If (error is big) Then output is big

R2) If (error is big) Then output is small

R3) If (error is big) Then output is medium

As another example, the inconsistent rules in group 1 can
be thought to be approximately equal to the rules in group
2 as illustrated in Figure 4.

(group 1)

if x is big Then u is big

if x is small Then u is small

if y is big Then u is big

if y is small Then u is small

(group 2)

if (x is big) and (y is big) Then u is big

if (x is big) and (v is small) Then u is medium

if (x is small) and (y is big) Then u is medium

if (x is small) and (y is small) Then u is big

There are situations in which the control actions of an
expert are more easily described by the inconsistent rules.
An example will be given in the simulation result in this

paper.

III. Design of FLC

We discuss a design method for FLC considering the
certainty of consequents of rules so that it is suitable for

inconsistent rules.
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IT®is smatland y is small Then u is R
I 1 is small and y is bigTheny is B
If 4 is big and y is small Then u is
1ty is hin and y i< bin Then u is B

Fig.2. Fuzzy If-Then rules can be thought as a look up
table with ambiguous boundaries.
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It is small and y is small Then v is A

I uis small and y is big Then v is B

I wis big and y is small Then u is C

1T nis big and y is big Then u is D

I 1 is medium and y is medium Then u is £

Fig.3. Inconsistent rules can be thought as a look up table
whosc partitions arc luid to overlap cach other.
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Fig.4. Inconsistent rules can be used as an alternative

means to represent the control action.

First, we define a certainty measure in order to con-

sider the certainty of consequents of rules. There are

universes of discourse representing conclusions in which only

one element should be chosen ultimately. FLC can be an



example. Fat shaped fuzzy sets can be considered to be
more uncertain than slim shaped fuzzy sets. Many works[7]
discussed the method for measuring the fuzziness or the cer-
tainty of given fuzzy sets. But no attention is paid to
whether the shapes of the fuzzy sets are fat or slim.
Definition 1: Measure of certainty

Let X = [a, b] C R! be the universe of discourse and F,
be the family of all fuzzy sets on X. Let the normalized
size function §,: F, - [0, 1] be

5,(A)=0, if max {p;(x)} = 0

5,(A) = Lbu/i (x)dx / max{p;(x)}(b — a) otherwise

The measure of certainty m, (A) is defined as:
m (A) = min{max{p; ()}, 1 — S, (4))

where p; (x) is the membership function of A €F,.

We find from the above definition that the normalized

size of the membership function also influences on the cer-

tainty of the fuzzy set.

Let us define a metric on the fuzzy sets to usc for the
problem of combining conclusions. It may be desirable to
define the distance between two fuzzy sets in such a manner
that if the set of features of the two fuzzy sets, such as the
centroid of the membership function and the measure of
fuzziness, are close to each other, the distancc between the
two fuzzy sets are short.

Definition 2: Feature metric
Let F_ be the family of all fuzzy sets on which feature vec-
tors P, = pi. p2 - . phl. Py = (Ps-p2.~ . Pkl can
be defined. The feature metric Ps (A. B) is defined on F,
as follows:

n

P, (A, B) = (Z (i ~ pp))'"?

i=0

where A, B € F..

In case that conclusion alternatives described by fuzzy
sets are issued by many conclusion sources, we discuss the
problem of combining conclusions.

Problem of combining conclusions:

Let
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X : universe of discourse of conclusion of finite interval in
R
F, : family of all fuzzy sets on X.

m_ (certainty measure) : F. ~ [0, 1] in R!

p : feature metric defined on F,. F, - RL.

Given the family of conclusion alternatives from n conclu-
sion sources
C, ={cy ey ~,c}, g €F,forl <i=<n,

the problem of combining conclusions is to find ¢ €F,

which minimizes

J = 2mlc)p (e, ¢f)
i=0

6]

Here we find the solution of the problem of combining
conclusions. Introducing the definition of feature metric
into Equation (1), we obtain

n

b

i=0

m(c) (2 @k — pi

i=0

J = 2

Let us find all the elements of the feature vector cf which
minimize (2). Because J is a quadratic function of pff, the
solution of leapff = 0 renders the value for a minimum
1. Since

n
2
aliapy = X m(c;)(@3p)pf(cin cf))

i=1

It

n

k k k2
E m. (C‘- )'(B/BPCI)(‘UCI- - Prf)
i=1

'2'2 m. (C,')'(P:i - ij)

i=1

n n
2> m, (c,.)-pcki + 2 mc(q)~p:f =0
i=1 i=1

we find
Pt = Tpkwify(m(c)) 1 Swify(m ()  (3)

i=1

The Equation (3) shows that the fuzzy set which minimizes

i=1

the weghted sum of the squared fcature metric to given
fuzzy sets has the set of features whose members are the
weighted algebraic means of the members of the fcature

vectors of given fuzzy sets.

Finally, we propose the minimum distant inference

method to overcome the difficulty of far shape domonant



phenomenon in  conventional FLCs.

Considering the

Mamdani’s FLC, the difficulties arise in the operation
applying the max-union to each deduced conclusion from
each fired

rule. Therefore, we replace the operation of

max-unuon with the method of combining conclusions.

We apply the Equation (3) to FLC. For this, first, we
simply choose only the centroid of membership function for
a member of feature vector. By the definition of the

features metric, p (4, B) is chosen as

oA BY=((ps —pg " =y — s
where p, and pg are the centroid of the membership func-
tions of A and B, respectively.
Consider the FLC with n inputs and one output. Suppose
there are m rules. If the i'th rule with k antecedent condi-
tions is given as
IF (u, is A;) and (u, is A,) - (4, is A,) THEN (Y is 0,)
where u; ~ wu, are k inputs considered in the i’th rule and
A, ~ A, are linguistic terms represented by fuzzy sets and
Y is the output of the FLC and O; is the consequent

linguistic term of the i'th rule.

The compatibility of the i’th rule, J; is defined as

J; = minfpg (), mg,(eg), po@), k=n.

The membership function p; of the conclusion alternative

from the i’th rule ¢; is defined as

B = B U By Sy = i >
Let p; be the centroid of ¢; By the result of the method of
combining conclusions, the feature (centroid) p ., of the
final conclusion c;, that is to be the output of the FLC,
can be written as

m m

Py = Zpame(e) 1 S m(e)

i=1 i=0

Figure 5 illustrates an examplc of how the FLC with the

minimum distant inference method calculates the output.
A noteworthy property of the minimwm distant infer-
ence method compared to that of the Min-Max inference

method is that if two inconsistent rules are given with max-
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current U. current U

IF (Ul is a)

and (U: is B) THEN (Yl is £) Centrold =f
m. = ¢
| 1 :
u u ,
i
_ R
| {
. . centroid =f
IF (Uy is C) and {U; is D) THEN (Y is F) m, = c -

! ! c. fi+ ¢ £
final output ¥ =—————uZ=
RN

Fig.5. Minimum distant inference procedure.
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Fig.6. Comparison of the final outputs.

imum compatibility as in Figurc 6, the Min-Max inference
method with centroid defuzzification yields the output which
is close to the centroid of the fat shaped fuzzy set. The
minimum distant inference method yields output which is
close to the centroid of the slim shaped one which can be

said to be more certain.

VI. Simulation Results

The overhead crane system shown in Figure 7 is used

for transporting a load to a target position. This system

can be described as

8 = — (g/)(sin® + (a/g)-cosB). a =¥ = fIiM

f : input force (N)

a : acceleration of the trolley (m/secz)
8 : angle of the load (rad)

x : trolley position
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(a) Rule table for reduting swing (b} Rule table for positioning trolley
Fig.7. Over head crane system. Fig.8. Inconsistent rules.
M : weight of the trolley
. 2
g : gravity constant (m/sec )
Assume M = 1,1 = 1 and g = 9.8 for this case. The

control objectives are two fold:

(i) Maintain the position error within a given bound at

stop state.

(ii) Maintain swing as small as possible.

For this, we can utilize four variables such as angle of
load, change of angle, trolley position, change of trolley
position for control. Note that the control action for the

objective (i) can cause the swing of the load and the con-

trol action for the objective (ii) can cause positioning error.

NB NS PS PB MNS PLS
NM ZE PM

It is very difficult for even skilled experts to describe the
{a) Fuzzy sets for antecedents.(b) Fuzzy sets for conseguents.

control rules satisfying the both objectives. However, obtain- Fig.9. Membership functions for linguistic terms.

ing rules for only one objective may be more easy. We
obtain two groups of rules designed to satisfy only one

objective(Figure 8). The two groups of rules can be said to

that one group of rules is applied to both of inference
be inconsistent rules, because the rules are laid to overlap

methods, both the minimum distant inference method and the
cach other in four variable look up table. Also, because of

Min-Max inference method satisfy the objective. When two
the uncertainty in describing the control action, the fuzzy

. . groups of rules are simultaneousely applied, the Min-Max
sets in the consequents of the rules have different width in

. inference method satisfies neither of the two control objec-
their shapes as shown in Figure 9 (b). When we could not

' . . tives of anti swing and exact positioning, while the minimum
describe the control action precisely, we use the fuzzy scts

distant  inference method satisfies all the control
with fat shapes such as MNS., PLS and when we could

objectives(see Figure 10 thru 12).
describe the control action precisely, we use the fuzzy sets

V. Conclusions
with slim shapes such as NVS, PVS.

In order to overcome the far  sha dom
. . . S onant
The Min-Max inference method is chosen to be com- P

. o ) . phenomenon in the conventional inference methods, we have
pared with the minimum distant inference method. In case

proposed the method of combing conclusions. Also, we have
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applied it for the minimum distant inference method for

FLC with success.

The conventional inference methods may not effec-
tively deal with situations in which there are rules having
fuzzy sets with different width in their consequents, and
more worse when there are also inconsistent rules. By con-
trast, the minimum distant inference method can cope with
these situations well. We find that the minimum distant
inference method can be better in many situations than con-
in an uncertain

ventional inference methods,

specially
environment where inconsistent rules and rules having fuzzy
sets with different width in their consequents exist.
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