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Abstract

Classical methods for estimating transfer function
models have not always been successful, A statistic
approach to the identification of transfer function
models which is corrupted by disturbances or noise is
presented. The estimated impulse response is obtained
from the autocorrelation function and cross correlation
function between the measured input and output. Several
data analysis tools such as R- , S- and GPAC array for
the estimated impulse response give us pretty clear
information on the order of transfer function models,

1. Introduction

The reason control is necessary is that there are
inherent disturbances or noise in the process. Noise
contains some information on the system in question.
There have been many studies on the identification of
stochastic models to forecast future values and
control process, H.L.Gray, G.D.Kelly and D.D.McIntire
proposed R-array and S-array in 1978 to identify
order{p,q) of the Autoregressive-Moving Average(ARMA)
process driven by white noise[l]. With their proposal
the order of ARMA process can be determined uniquely.
In 1979 Woodward and Gray proposed GPAC array based on
the generalized partial autocorrelation function, which
tells us p and q more effectively,

In this paper, transfer function models with noise as

shown in Fig. 1 is considered.

Dynamic
Xe ——— F———— Zt = Ye+Nt
(stochastic System :
process)

(Z: : measured output
N: : noise contained
in measurement )
Fig.1 Time series in relation to a dynamic system

Classical methods for estimating transfer function
models based on deterministic perturbations of the
input such as step, pulse, and sinusoidal changes have
not always been successful because the response of the
system may be masked by uncontrollable disturbances
collectively referred to as a noise, .In this paper
statistical method for estimating transfer function
models with noise is presented,

I. Autoregressive-Moving Average(ARMA) Process Modeling

let’'s consider linear filter system (Fig.2) with
white noise input a: and measurable filtered output
Z:.

ag ——— Linear — Zt
(white noise) Filter (ARMA process)

Fig.2 Linear filter system driven by white noise

Filtered Z: may be described in general form of
ARMA(p, q) process.
Ze = P1Zc-1+P2Z1-2+-+DPpZe-p
tat-@rat-;---Gqat-q (2-1)

2.1 Definitions and Theorems

2.1.1 R-array and S-array

Let m be an integer, h)0, and f be a real-valued
function, Also let fm = f(mh),

fm fm*l ot frn~n~l
fme 1 fmez ¢ ¢ ¢ fmen
Ha(fm) = | - : (2-2)
foen-1 fmen vt fme2n-2
Ho(fm) = 1 (2-3)
and
1 1 1
fm Tme 1 ot fmen

Hoe 1 (1: fm) = . . (2-4)

fmen-1 fmen st fmezn-1



Then we define Rzz(m) = ®1Rzz{m-1)+P2Rzz(m-2)+---+DpRzz (m-p) (2-15)

Ho(fm)
Ra(fm) = ——— (2-5) If we calculate R-array, S-array and GPAC array for
Hn(1: fm) the autocorrelation function instead of fm in eq.(2-9)
and eq. (2-10), we get particular patterns in R-array,
Hney(1:fm) S-array and GPAC array as shown in Table 1,2 and 3.
Sn(fm) = ———— (2-6) !
Ha(fm) n 1 p+l
m
Pye and Atchison have shown that Rn{fm) and Sn(fm) can
be calculated recursively by the following relations. 0
Define .
-q-p-1 0
So(fm) =1 , m=0, %1, %2, - .. (2-7) -q-p non zero
Ri{fa) = fm, m=0, *1, *2, - .- (2-8)
Then : ’
-p non zero
Rn(fm*l) 4
Sn(fm) = Sa-1{fme1) [ — -1 :| (2-9) ool 0
Ra(fn) P
and ’ ’
Sn{fme1) Table 1. R array for autocorrelation function of ARMA(
. .q)
Rue1 (fn) = Ra(fme1) [ — ] (2-10) ¢ Y P
Sn{fm)
for n=1,2,-- and n=0, +1, *+2,-.-, n 1 p p*l p+2
m
2.1.2 GPAC array .
. CZ b
The generalized partial autocorrelation function ) c2 *
(GPAC) is defined as -q-p c2
-q-p+l
Rzz(j) Rzz(j-1) Rzz(j-k+2) Rzz(j+1) . c
Rzz(j+1) Rzz(Jj) Rzz(j-k+3} Rzz(j+2) - !
. . . . q-p “c1
: ) ) . a-prl el
Rez(j#k-1) Rea(jtk-2) - -Rez(i*1)  Rez(j+k) ~ o
Prkd = ' :
Rzz(j) Rzz(J‘l) - Rzz(J"k‘z) Rzz(.j'k*l)
Rzz(j*l) Rzz(j) + o Rzz(j-k+3) Rzz(.]"k*z) % . infinite number
. . . : cp = (-1)F (1-By-Pg----Pp)
. . . . c2 = -(ci/Pp )
. R . - i i Alp,
Rez(j+k-1) Raz(j+k-2) - - Rzz(j+1) Raz(j) Table 2. S-array for autocorrelation function of ARMA(p,q)
(2-11) .
(where Rzz(j) is the autocorrelation funtion of Z¢.) Lo p pelo el
Woodward and Gray proposed powerful method generating 0
the generalized partial autocorrelation function.
Sk(f-keje1) q by o ... 0 ...
dyd = - ——————— Jif fm = Rzz(m) (2-12) —
Sk(f-k-j) q+l br
Sk(f-k+jer)
brd = (-1ktl————— 1 if fn =(-1)™Rzz(m)(2-13)
Sk(f-x-j)

Table 3. GPAC array for autocorrelation function of ARMA(p,q)
2.2 R-, S- and GPAC array of ARMA(p.g)
A modification of S-array called "shifted S-array”

Autocorrelation function of Zt can be derived from defined in eq. (2-16) enables us to see the pattern more

eq.(2-1) by multiplying Zi-m on both sides and taking easily as shown in Table 4,

the expectation,

Sk*(fj) = Sk(fj-ke1) (2-16)

Rzz(m) = Qlﬁzz(m‘l)*q)szz(m—Z)+"'*¢pRzz(m'D)
*Rza(m)- 6 1Rza(m-1)---- & qRzalm-q) (2-14) Table 1 represents the behaviour of the R-array when
where Rza(-) is the cross correlation function between Zu is ARMA(p.q) and fm = Rzz(m). Elements in a column

. —a- d -
7. and a.. Noting that a: and Z¢ are uncorrelated, prl are zero for rows k, k(-ap and kog-p. The

i - he S~ hown |
eq. (2-14) can be written for mq as follows, behaviours of the S-array and the array are shown in

Table 2 and Table 4 respectively. S$*-array represents
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o P p*l pti
n
c2
-qg-2 | m————
-g-1 cz * B3
q C1 v|-C1 (o]}
q+1 c1

Table 4, Shifted S-array for auto. function of ARMA(p,q)

that constant behaviour occurs in a column p for rows
k, k<-q and k>q-1.

value +00 occur at a row -q-1 and (-1)ic| occur at a

And in columns p+i,(i=1,2, ), the

row .

More powerful pattern appers in GPAC array in which
constant behaviour occurs in a columm p for rows
k,k>gq-1 and zero values appear in a row g for columns
k, k>p. From these patterns orders p and q of ARMA

process can be determined uniquely.

M. Transfer Function Models

3.1 Nature of transfer function

NEEEEE

Vo Vi Vz V3 V4 Vs Vs Vs

Impulse response function

BN
Xt Dynamic System ————r_—'—» Y
Input Output
Fig.3 Input to, and output from, a dynamic system
We suppose that pairs of observations (X, Yti) are

available at equispaced intervals of time from some

dynamic system, It frequently happens that, to an

adequate approximation, the inertia of the system can
be represented by a linear filter of the form

Ye VoXe + ViXe-1 + VaXu-z + -

( Vo + VIB + V2B2 + --) Xt
V(B) Xt

(3-1)

The weights Vg, V|, V2, - in eq.(3-1) are called the
impulse response function of the system. The operator
V(B) is called the transfer function where B is
backward shift operator.

On the other hand, discrete dynamic systems are also

represented by the general linear difference equation,

(1-81B-&2B% - --- -8¢Br)Y: =
(Wo-W1B-W2:B2 - --- - WsBs)Xi-p  (3-2)
or
S(B)Y: = W(B)BbX. (3-3)

1A

Substituting eq.{3-1) into eq.(3-3) yields
(1-81B-82B% - --- -8¢Br)(Vo+ViB+-) =
(Wo-W(B- --- - WsBs)Bb (3-4)
On equating coefficients of B, we find
Vi=0 (j =0,1,---,b-1) (3-

3-5)
Vi= &1Vi-+82Vij-z+-+8rVj-r + Wo (j=b) (3-6)
Vj=81Vj-1+82Vj-2++8rVj-r - Wj-p
(j=b+l, ---, b+s) (3-
Vi = 81Vj-1+82Vj-2+-+8rVj-r (J > brs) (3-

In practice, the output could not be expected to

follow exactly pattern determined by the transfer

function model, even if that model were entirely

adequate, Disturbances of various kinds other than
A disturbance might

originate at any point in the system, but it is often

input normally corrupt the system.

convenient to consider it in terms of its net effect on

the output Z, as indicated in Fig. 4.

¢ 1(B)O(B)

Nt

at —— | Linear Filter

& 1{B)Q(B)
Xt Linear 7+
—_— —_
Dynamic System Y

Fig.4 Transfer function model with added noise

1f we assume that the disturbance, or noise N, is
independent of X, and is additive with respect to the
influence of X, then we can write

Ze = Ye v+ Nt (3-9)

1f the noise model can be represented by an ARMA process

Ne = ¢ 1(B)g(B)a: (3-10)
where at is white noise, the model (3-9) can be
written as

Zi = 8§ H{Blw(B)Xt-b + ¢ 1{(B)E(B)ax (3-11)
or

Z: = V(B)Xt + Nt (3-12)

3.2 The estimated impulse response, /\75

In the same way that the autocorrelation function was
used to identify stochastic models, the data analysis
transfer

tool employed for the identification of

function models is the cross correlation function

between the input and the output. We can get cross
correlation function by multiplying Xt-m on both sides

of eq.(3-12) and taking expectation,

Rxz(m) = VoRxx(m) + ViRxx(m-1) + VaRxx(m-2) +---
(3-13)
(E[Xt-mNt1=0 because Xt and N¢ are uncorrelated.)

When the process are nonstationary it is assumed

that stationarity can be induced by suitable
differencing. Nonstationary behaviour is suspected if

the estimated auto-and cross-correlation functions of



the (X, Z+) series fail to damp out quickly.

Suppose that the weights V; are effectively zero for
m>k. Then the first k+1 of the equations (3-12) can be
written

Rxz(0) Rxx(0) Rxx(1) Rxx(k) Vo
Rxz(1) Rxx(1) Rxx(0) Rxx(k‘l)“ VIT
Rxz(k) Raxx(k} Rxx(k-1)+ - Rxx(0) Vi
(3-14)
Noting that above matrix is symmetric, we can get

estimates Vj using matrix algebra algorithm, Delay
factor, b, in eq.(3-11) can be determined from eq. (3-5)

and estimated VL

3.3 Identification of transfer function models

If we substitute (7,- calculated in section 3.2 into
fm in eq.(2-9) and (2-10), we get R-, S*- and GPAC
array for the estimated impulse response, Table 5,
Table 6 and Table 7 represent behaviour of R-, S*- and
GPAC array for the estimated impulse response. In
R-array elements at a column r+1 for rows k, kDb+s-r
and k<{-b-s-r are zero, S¥-array represents constant
behaviour in a column r for rows k, k>b+s-1 and k<{-b-s.
In columns r+i, (i=1,2,--), the value (-1)icy occur at a
row b+s and infinite number at a row -b-s-1,

GPAC array represent constant behaviour in a column r
for rows k, kdb+s-1 and zero values appear in a row
b+s. From these behaviours, order of transfer function
models, r and s, and delay factor b can be determined,

-b-s-r-1 0

b+s-r+l 0

Table 5. R-array for the estimated impulse response

[l
o,
o

{

o
0o -
oo~
|

b+s cy -cy ¢y ..
<y
<
% o infinite number
cr = (-1} (1-81-82---8+¢)
c2 = -(c1/8r)

Table 6. $*-array for the estimated impulse response
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0

b+s o¢[ |0 0 0
Or
Sr

Table 7. GPAC array for the estimated impulse response

N.An Example of lIdentification of Transfer Function Models

An example to justify proposed method in previous
chapter is presented, Let's consider following transfer
function model.

Z: = Y¢ + N¢ (4-1)

The relation between input Xt and uncorrupted output
Y¢ is written as

Yt =0.9Y¢-1-0.68Y¢-2+X1-2-0.8X1-3  (4-2)
Noise Nt is an ARMA process.
Nt = 0.5Ne-; + at + 0.7a¢-; (4-3)
From eq. (4-1) through (4-3),we find
r=2, s=1, b=2, p=1, q=l. (4-4)

Now, same result can be obtained with proposed method
of identification of transfer function model.
The procedure consists of
a) generating observation pairs (X, Zt) from white
noise and arbitrary initial values, Xgo, X;. Xa3.
Xs.

b) calculating the estimated impulse response VJ
(Table 8) using eq.(3-14). From this step, delay
factor b can be determined.

c) calculating R-, $*- and GPAC array (Table 9,10,11).
Order of transfer function model, r and s, can be
determined at this point.

d) generating the estimated noise Ne using
Re= Ze-VoXe 0 X1 - Ve Xz - - (4-5)

e) calculating R-, $*- and GPAC array for

autocorrelation function of Ni. (Table 12,13, 14).
This step yields p and q.

As we expect, the same result as eq. (4-4) is cbtained
from Table 8 through Table 14, Table 8 is the
estimated impulse response. First two value of /\7J‘ are
quite small so that we can assume that there is delay
up to j=3 that is b=2, Table 11 is the GPAC array.
Table 11 tells us r=2, b+s=3 and s=l.
constant values -0,7080 is close to &2 in eq.(4-2).
can be checked in Table 10, Shifted
S-array in which there is a typical pattern of Shifted

By the way

These values

S-array. From this table we can conclude that the



And
constant values in second column of Table 10 can be

values for r, s and b we have guessed are correct

calculated by hand as follows:

-1)r (1 - (81 + 82+ -+ 8r)]
(-1)2 [1 - (0.9 - 0.68)]" = 0.78

Table 9 is the R-array.
difficult to tell the
in R-array are usually small,
From the third row(m=2) in the third

column, numbers are quite small,

Usually R-array itself is
order‘of model because numbers
But it can be used as a
supplement table.
It is helpful to keep
in mind that numbers in columns greater than r+l are
So we can think that first column
Table 14 is
the GPAC array for noise where p and g in eq.(4-3) can
be estimated.

usually very small,

in which numbers are close to zero is r+l.

0.445 in first column and second row is
Numbers in the right

And 0.445 is
In the Shifted
numbers from second column in m=-2
And -0.555 in first column and
m=1 is the constant number and is close to -0.5 which

the constant value in GPAC array.
side of that value are close to zero
close to 0.5 that is ®; in eq.(4-3).

S-array, Table 13
are very large number

can be calculated from (-1}1(1-®)),

V(0) = 0.5035 V(16) = -0.0059

V(1) = 0.0844 V{(17) = -0.04%4

V(2) = 1.0035 V(18) = -0.0339

V(3) = 0.1302 V(19) = 0.0152

V(4) = -0.6019 V(20) = 0.0303

V(5) = -0.5936 V(2l) = 0.0242

V(6) = -0.1405 Vv(22) = 0.0018

V(7) = 0.2790 V(23) = -0.0153

V(8) = 0.3470 V{(24) = -0.0119

V(9) = 0.1138 Vi(25) = -0.0171

V(10) = -0.1232 V(26) = 0.0104

V(11) = -0.2023 V(27) = 0.0079

V(12) = -0.0958 V(28) = 0.0052

V(13) = 0.0371 V(29) = -0.0002

V(14) = 0.1023 V(30) = -0.0036

V(15) = 0.0586

Table 8. The estimated Impulse Response i;j
m= 0 0.504 -1.189 2,709 0.171 -0.015 -0.052
m= 1 0.084 -1.084 -0.279 -0.079 -0.010 0.003
m= 2 1.003 0.711 |-0.082] -0.003 0.000 0.004
m= 3 0.130 0.600 | 0.050| 0.011 -0.003 0.006
m= 4 -0.602 -32.365 |-0.016| -0.081 -0.009 0.0i2
m=5 -0.594 -0.409 |-0.010| -0.005 -0.011 0.001
m=6 -0,140 -0,302 | 0.023| 0.012 -0.008 -0.043
m=7 0.279 -1.304 {-0.035| 0.007 -0.019 0.044
m= 8 0.347 0.239 ] 0.035| 0.007 0.035 0.002
m= 9 0.114 0.161 (-0.033] 0.006 0.002 -0.009
m=10 -0.123 0.368 | 0.022] 0.002 0.000 -0.008
m=11 -0.202 -0.157 |-0.034| -0.001 0.009 -0.013
m=12 -0.096 -0.084 | 0.023| 0.000 0.0t3 0.001

Table 9. R array for the estimated impulse response

m=0
m=}
n=2

-0.8323 -1.1324
10,8836 -0.9609
-0.8702 1.4412

0.7274
-13. 4936
-1, 5899

4. 3589
4.3341

1.7036 -1.7981

-4.1854 -8.2939
309.383 -8.7334

1.8570

=3 -5.6214 }0.8749 |-0.6170 0.9019 -0.7310

0.6194

m=4
w=5
=6
w=7

-0.0137
-0.7634
-2.9863
0.2436
w=8 -0.6720
n=9 -2,0825
m=1 0 0.6418

0.7549
0.7537
0.7832
0.8092
0.7951
0.6775
0.8242

-1.2085
-0.9972
-0.2924
-2.6415
-2.0332 6.6740
-1.3468 0.5984
-1.6025 -0.0937

1.0761
2.2997
2.3752
2.4701

-0.3815
-2.3864
-22.9600
4.3613
1.4740
-0.1759
-0.1437

Table 10, S* array for the estimated

0.1677
11,8836
0.1298

1.9647 -0.4050
1.9993-25. 0780
-0, 6235 -0.3093

-5.0863 0.1735
-5.1001 366.095
-0.2114 -0.1112

12. 4794
12.4612
-0. 0696

3. 0881
2.5340
-4,5053
2.3492
1.5688
0.1556
4.5589

impulse response

1.3104
292,236
-0.0477

-4.6214|-0.7080|{0.1116 ~0.0554 0.0212 0.0069

-0.0212

0.9863
0.2366
-1.9863
1.2436
0.3280
-1, 0825
1.6418

-0.6093
-0.6921
-0, 6830
-0. 7003
-0.6284
-0. 6858
-0.7621

-0.3671
-0.1965
0. 4506
-1.5979
-1.0714
-0. 5290
-0.7878

-0.0240 0.0427
-0,3956 -0.0019
-0.4105 -3.5371
-0.2643 1.1807
-2.8072 0.8717
0.3944 0.1777
0.6662 0.1565

0.0785
0.0165
0.0222
-1.0348
-0,8237
0.0120
4. 4609

-0.0110
0.0617
0.0192
0.0039
0. 0000
-0.2964
-0.3035

Table 11. GPAC array for the estimated impulse response

m=-5 0.0023 | 0.0174| 0.0149 -0.0559 0.1072 -0,2333
m=-4 0.0041 (-0,0113] -0,0207 -0.0829 0.2082 0,0053
m=-3 0,0215 [-0.0237{ 0.0771 -0.2390 0.0251 -0.0104
m=-2 0.0640 -0.1000 0.1967 0.0309 0.0104 -2.6447
m=-1 0.1439 -0.3425 0.0424 -0.0057 0.0104 0.0104
m= 0 0.1987 0.1458 -0.0022 -0.0072 0.0044 0.0018
m=1 0.1439 | 0.0126] 0.0078 0.0038 0.0005 0.0015
m= 2 0.0640 | 0.0046] 0.0068 -0.0042 -0.0018 -0,0010
m= 3 0.0215 [-0.0018| 0.0073 0.0147 -0.0003 -0.0025
m= 4 0,0041 [-0.0144| 0.0078 -0.0053 0.0008 -0.0081
m= 5 0,0023 {-0.0053| 0.0046 -0.0613 0.0077 0.0080
n= 6 0.0077 {-0.0104| 0.0051 -0.0029 0.0098 0,0057
m= 7 0.0133 {-0.0351| -0.0013 -0.0043 0.0059 -0.0009
m= 8 0.0154 | 0.0208| 0.0043 -4,0700 0.0013 -0.0035
Table 12. R array for the estimated noise
m=-6{-0.703| 1.374 0.223 -0.630 0.774 22.317 -31.572
m=-5| 0.806|-3.666 0.489 -0.610 122.276 26.198 -193.039
m=-4| 4.206{-6.952 0.322 14.896 5.388 2.300 7.281
m=-3| 1.982| 2.150 -5.146 4,006 -0.009 -3.825 5.949
m=-2| 1.249 ‘4.031—19.047 -9.191 3.840 -3.838 6.178
m=-1 0.381 0.924 1.433 2.699 2. 541 13.805 5.074
m=0 -0.276 0.393 -0.309 0,348 -0.306 0.313 -0.295
m= 1(-0.555 l0.507 -0.533 0.632 -0.371 1.098 -0.339
m= 2]-0.665] 0.420 -1.941 -0.517 0.001 0.129 -0.362
m= 3(-0.808| 1.130 -0.147 0.225 -0.129 0.129 -0.273
m= 4|-0.446|-3.031 -0.229 0.485 -0.432 0.359 -0.363
m= 5| 2.365]/-1.490 -0.096 0.430 -2.032 0.314 -1.843
m= 6| 0.728] 0.691 -0.278 0.378 -0.325 0.540 2.120
m= 7| 0.159| 0.381 0.037 0.396 -1.607 -2,351 -2.438
o= 8{-0.205| 0.326 -0.410 0,391 3.503 8,055 -2,329
m= 9/-0.552] 0.305 -1.301 -0.657 -0,183 0.365 -0.645
Table 13. S* array for the estimated noise
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0.724 -0.426 0.215-0.129 0.121 -0.023 0.058 -0.008

0.445(-0.126 -0.028 0.069 0.097 0.286 0,055 -0.021

0.335] -0.196 -0.377 0.129
0.192| 0.163 0.457-0.015
0.554| -0.827 0.469 0.795
3.365) 1.084 0.433 0.682
1,728 -2.018 0.300 0.488
1.159| -1.283 1.222 0.467
0,795 -0.881 -0.285 0.631
0.448{ -0.962 -2.692 1.358
-0.492| -0.847 1.412-1.737

056 0,034 0.061 -0.393
024 -0,056 0.037 -0.068
004 -0.014-0.002 0.007
624 -0.014-0.058 0.025
085 0.279 0.119 -0.331
434 1.033 2.469 0.006
601 10,32 2.517-27.069
355 0.238 0.360 -0.100
046 -1.754 0.416 -0.218

'

mrmARmoONMNOOO

Table 14. GPAC array for the estimatec noise

V. Conclusion

In this paper we have demonstrated the use of GPAC
R- and S-array to identify transfer function models in
stochastic method, [f we get input and output
observations, we can plug those pairs into GPAC, R- and
S-array ,which tell us pretty clear information on the
identification of transfer function model.
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