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ABSTRACT

A manipulator system that needs significantly large
workspace volume and high payload capacity has greater link
flexibility than typical industrial robots and teleoperators. If
link flexibility is significant, position control of the
manipulator’s end-effector exhibits the nonminimum phase,
noncollocated, and flexible structure system control problems.
This paper addresses inverse dynamic trajectory planning
issues of a flexible manipulator. The inverse dynamic
equation of a flexible manipulator was solved in the time
domain. By dividing the inverse system equation into the
causal part and the anticausal part, the inverse dynamic
method calculates the feedforward torque and the trajectories
of all state variables that do not excite structural vibrations
for a given end-point trajectory. Through simulation and
experiment with a single-link flexible manipulator, the
effectiveness of the inverse dynamic method has been
demonstrated.

1. Introduction

A manipulation system such as the long-reach
manipulator for nuclear waste remediation or the space shuttle
arm, which requires large workspace volume and high
payload capacity, has greater link flexibility than typical
industrial robots and teleoperators. If link flexibility is
significant, control of the end-effector’s position will cope
with the nonminimum phase, noncollocated, and flexible
structure control problems. The flexible manipulator system
should be able to follow a given end-point trajectory to be
used as a practical robotic manipulator in spite of its
flexibility. This paper proposes a simple time-domain inverse
dynamic method that enables a flexible manipulator to follow
a given end-point trajectory accurately without overshoot or
residual vibration.

The feedback regulating control is one of the typical
methods used to suppress the structural vibration of a
manipulator. By using joint and strain feedback control,
Hastings and Book [7] demonstrated structural vibration could
be damped successfully. Even though the feedback control
can dampen the structural vibration, their experiment showed
undershoot, overshoot, and flexible vibration to a step
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response. For a step input command, these vibration
phenomena are inevitable with the feedback control scheme
because the feedback control signal contains high frequency
components that excite natural frequencies of the system.
Instead of a step command, a smooth nominal trajectory
should be used as the joint reference command of tracking
control. However, the desired trajectories of flexible mode
variables are necessary to produce the desired output
trajectories such as joint and strain. In the absence of desired
flexible mode values, it has been acceptable to assign a zero
value to each desired flexible mode values to suppress
vibration. In other words, reference commands are given to
the flexible manipulator to follow the trajectory like a rigid
manipulator. Even though the feedback tracking control
reduces the vibration, such unrealistic commands always
generate vibration.

To avoid the above trajectory generation problem, De
Luca and Siciliano [6] suggested a joint-based inversion
control scheme. This method showed good tracking results
for a certain joint trajectory, but it could not be extended to
an end-point trajectory following control, because of
nonminimum phase system characteristics. Oosting and
Dickerson [8] proposed a calculation method of the torque to
follow a smooth trajectory with the simple lumped-parameter
model of a two-link flexible manipulator.

To make the end-point of a flexible manipulator follow
a given trajectory, Bayo [2] proposed a new approach. For
a given end-point acceleration profile, the required torque was
calculated by solving the inverse dynamic equation in the
frequency domain through the inverse fast Fourier transform.
Bayo pointed out that the inverse dynamic system where the
end-point acceleration is the input and the joint torque is the
output is a noncausal system because the output (torque) must
begin before the input (end-point acceleration) begins. In
spite of the excellent results reported, this method has a
drawback. It requires extensive computation for the
transformation of the dynamic model and the input trajectory
from the time domain to the frequency domain. It also
requires the inverse transformation of the output back to the
time domain. To reduce this computational burden, Bayo and
Moulin [4] introduced the convolution integral method to
solve the inverse dynamic equation.

Asada and Ma [1] derived an inverse dynamic equation
by using assumed mode functions for a general n-link case.
Since the transfer function of a flexible manipulator between
the input (torque) and the output (end-point position) is a
nonminimum phase system, it has some positive real value
zeros. These zeros become positive poles of the inverse
dynamic system transfer function. They cause the inverse



system to be unstable if the inverse system output is restricted
to causal solutions. Asada and Ma showed nonlinear effecfts
using rigid motion torque without solving the inverse
dynamic equation completely.

Kwon and Book [12] introduced a new inverse dynamic
method that considerably relieves the calculation burden. The
required torque was calculated in the time domain, and the
desired trajectories of flexible mode coordinates were
obtained to dynamically match. the given end-point trajectory.
These trajectories are used as reference commands of flexible
coordinates for feedback tracking control. This trajectory
generation considering flexible dynamics is the distinctive
advantage of this time-domain inverse dynamic method.

This paper presents the inverse dynamic method with the
detailed interpretation of this method in the frequency
domain. First, a single-link manipulator is described and
modeled by using the assumed mode method. Second, the
time-domain inverse dynamic system equation is derived from
the dynamic model in a state space form. Third, the time-
domain inverse dynamic method is explained in the frequency
domain. Next, this inverse dynamic method is implemented
through simulations on the single-link flexible manipulator
shown in Figure 1. Results are compared with the output of
other typical control methods. Finally, a tracking controller
was designed that combines the inverse dynamic feedforward
control and the joint feedback control, and its experimental
results are presented and discussed.

2. Modeling
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Figure 1. A single link flexible manipulator

A single-link flexible manipulator having planar motions
is described as shown in Figure 1. The link is made of
aluminum beam (3/16"x1"x47"), and it is modeled with the
rotational inertia, Ib, and the unit length mass, RoA. The
rotating inertia of the servo motor, the tachometer, and the
clamping hub are modeled as the hub inertia, In. The payload
is modeled as the end mass, Me, and the rotational inertia, Je.
Though structural damping exists in the flexible link, it is
ignored in modeling.

To derive equations of motion of the manipulator, we
describe the position of a point on the beam with virtual rigid
body motion and flexible deflection by using a
Bemnoulli-Euler beam model. The virtual rigid body motion
is represented by the motion of the moving coordinate
attached to the beam. The flexible deflection is described by
a finite series of assumed modes with respect to that moving
reference frame.

Defining the rigid body motion is important because
different mode shape functions have to be used according to
the choice of the rigid body coordinate. Several authors [7,9]
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have used the rigid body coordinate that is attached at the
base hub like (a) of Figure 2 with the clamp-free boundary
condition mode functions. Other authors [5] defined the rigid
body coordinate to pass through the center of mass of the
beam and used pin-free mode functions, (b). Others [1] let
the rigid body coordinate pass through the end-point and used
the pin-pin mode functions, (c). All these definitions of the
rigid body coordinate can be valid because appropriate mode
functions that satisfy the geometric boundary conditions can
be chosen for each case. In this paper, the rigid body mode
coordinate that passes through the end-point of the beam is
selected like (c) of Figure 2, and the mode functions of pin-
pin boundary conditions are used to describe the displacement
of the beam.

To obtain an accurate model with a small number of
modes, more accurate boundary conditions were considered
such as the joint hub-inertia and the end-mass in addition to
the geometric pin-pin boundary condition for the mode shape
functions. For the inverse dynamic model, the first two mode
functions are used, and four modes are used for the
manipulator model in simulation. Because of the selection of
the rigid body coordinate, the end-point position of the beam
can be expressed by the rigid body mode variable alone.
This simple representation of the end-point position allows
easy derivation of the inverse dynamics equation.

By using Lagrange’s equations of motion, the dynamic
equation of a flexible manipulator is obtained with
generalized coordinates. The detailed derivation is given in
reference [12}.

(Mg + [D]4 + [Klq = [B] <

The dynamic equation can be divided into a rigid body
motion part and a flexible motion part as follows:

M, MJGy [P, D)@y fool@ [B
T - + T } + 0 K = B T

M, My M) |D, Dyl 4 7 9y, )
4y

where q, = q, : rigid body coordinate,

g = r 1} : flexible mode coordinate

In the partitioned matrices, the subscript r denotes rigid; f
denotes flexible; and the mixture, rf, denotes coefficients of
flexible coordinates in the rigid body mode equations.

For a state space form, we obtain the following dynamic



Eq. (2). Hereafter, this dynamic equation is referred to as the
direct dynamic equation to distinguish it from the inverse
dynamic equation derived in Section 3.

. 0 I 0
X= X + T

[M"K M"D] [M"Bl
Y = [C]X + [F]x

where

@
X={ 4,,qf4,cqflr

= { Q00 91> qor Qp ]1

3. Inverse Dynamic Equations

From the direct dynamic equations, the inverse dynamic
equation is derived, which represents the relationship between
the desired acceleration of the rigid mode (equivalent to the
tip acceleration) as input and the torque as output. Equation
(1) can be written in two parts:

[M,)4,+IM 14+(D, )4, +[DAdBl

M 17§, +IMJ3+1D N4, *[DAd K Jar(Ble (D

From Eq. (3), torque is expressed as

t = (B {[M,)4, + [MJg,+ D14, +[DJ4,} 3o

Substitution of above Eq. (3a) into Eq. (4) gives the
following relations between the flexible coordinate g, and the
rigid body coordinate g,.

[M)4,+ID)4,*[K)a, = [B,)d,+(B,M,

where [M) = {[M,1-IBJ[B]'[M ]}
D) = {[DA-[BAB) (D]} )
K] = (K]
(B,] = ([BAIB1'(D,)-[D ")

[B,] = ([BAIB)'IM,1-IM 1"}

From Eq. (4), the acceleration of the flexible coordinate is
expressed as

g, = -M3 M1, - M2 D 3%,
(6)
[, 1D, M K gy (M1 B
By substituting this Eq. (6) into Eq. (3), we obtain
T = [Cl g+ [CLl 4, +[F,14, +1F,14, )
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where  [G]={B,]-[MJ[M,"'[B]}"
[C,)=[G1(-[M MK J)
[C,1=[GUH[DA-IM M (D1}
[F,)=IGHD,]-(M M (D ")
[F ]=[GUIM,)-[M M, "M ]")

If Eq. (5) and Eq. (7) are represented in a state space form,
the inverse dynamic equations will be written in the following
simple form:

Let X, = (4,4}, 4q, = 1{q,.4,}"
0 I 0 0
X: =1 -ty T -1y e ®
M, 'K, M; D, M,'B, M, B,

T = [CpCRlX, + [F,F 4,

Xl = [4)X, + [B)4,

T = [C)X, + [Fld,

Since matrix A; has positive real eigenvalues (which
came from the positive zeros of the transfer function of the
direct dynamic system) as well as negative real eigenvalues,
integration of the Eq. (8) will diverge in causal sense.
However, if the solution range of the equation is expanded to
include noncausal solutions, a unique stable solution can be
obtained by integrating this differential equation.

To analyze the inverse system of a flexible manipulator,
let us define several terms. A causal system is the system
in which the output (impulse response) always occurs after an
input (impulse) is given. An anticausal system, on the
contrary, always has the output (backward impulse response)
before an input (impulse) is given. A noncausal system has
the combined effect of a causal system and an anticausal

Figure 3. Point-to-point motion of a flexible manipulator

system. In order to grasp the meanings of the above
definitions, the physical phenomena of the actual motion of
a flexible manipulator is described using Figure 3. If a
certain torque profile is applied to the manipulator, there is a
unique motion of the end-point. On the other hand, if this



unique motion of the end-point is given as a desired motion,
the previous torque profile should be obtained by using the
inverse dynamic equations. In most cases, to make the end-
point follow a certain trajectory profile, we have to preshape
(prebend) the flexible manipulator like position 2 of Figure 3.
Therefore, the required torque, which is necessary to preshape
it, must be applied from position 1 to 2 of Figure 3 before the
end-point starts to move. The torque (output of the inverse
system) acts before the tip motion (input of the inverse
system). This means that the inverse system has anticausal
characteristics. When the flexible manipulator stops, some
torque should be applied to release the flexible deflection
from position 4 to 5 of Figure 3 after the end-point stops.
This means that the inverse system has causal system
characteristics, too. Thus, such an inverse system can be
called a noncausal system, which is composed of a causal
system and an anticausal system.

With this intuitive motivation, the inverse dynamic
system can be divided into its causal part and its anticausal
part by using the following similarity transformation:

[T): similarity transformation matrix
X, = [1Ip,
= [T, T, PP, }"

where X‘={qf, q,}T . The T_’s basis are the eigenvectors that
have negative "eigenvalues, and T, is made of the
eigenvectors of positive eigenvalues.

. 0
_1 = ic
(14,7 ro a

P] 4, o0 {:} B,
o = * qn
|10 Au] P |Ba ©)
) [c.1(P.) [rF
= + :
tac Clac ac 1/2 F i qif
T =T YT,

Such a coordinate change decouples the inverse system into
two subsystems as shown in Eq. (9). The new variable P,
represents the coordinates of the causal system, and the P,
represents the anticausal system. Even though [F|] is not
required to be divided equally, it was divided equally to make
the causal system and the anticausal system symmetric.

For a given end-point trajectory, the causal part of the
torque is obtained by integrating the causal part of the inverse
dynamic equations forward in time, starting from the initial
time of the trajectory. The anticausal system equations must
be integrated backward in time, starting from the final time
of the trajectory. The meanings of the forward and backward
integrations are interpreted in detail in frequency domain in
Section 4. The total torque, which is the output of these
equations, is obtained by adding the outputs of the causal and
anticausal systems as shown in Figure 7. )

As additional outputs, the reference trajectory of the
entire flexible mode coordinates has been calculated from a
rigid body mode trajectory. As can be expected from Eq. (2)
and Eq. (9), the space of the full state vector X of the direct
dynamic system can be divided into three subspaces: the rigid
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body coordinate subspace g¢,, the causal part flexible
coordinate subspace P, and the anticausal part flexible
coordinate subspace P,. These subspaces are linearly
independent and orthogonal to each other. The relations of
these spaces are illustrated in Figure 4, and is described by
Eq. (10), in which only two flexible modes are considered.

where x={qr’ qﬂ' qu 4,’ qu q-ﬂ}T ’ qi,={q,, q'}T

XI-{qﬂr qﬂ, qu qﬂ}r =[1]P[

10 0000
00 1000
X=00Lq.+0100X=H,q . HX
o 1" j0oo0oOf' r ¢ (1)
00 0010
00 0001
=H

rqll M H){T]Pl = Hrqlr + HchPc + H/Tmpac
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Figure 4. Dimensional analysis of state variables of
flexible manipulator dynamic equations

From the given end-point trajectory, the rigid body coordinate
trajectory g, is obtained. The flexible coordinate trajectories
of P, and P, are calculated from the integration of Eq. (9).
Then, the trajectories of the whole states X can be obtained
by using the relation given by Eq. (10). These trajectory
values can be used as reference commands for feedback
tracking control.

The generation of complete state trajectories is the main
advantage of this time-domain inverse dynamic method over
the other methods [2,3,6). From the calculated state
trajectories, the desired output trajectories can be obtained
such as joint angle, joint velocity, and strains as well as the
inverse dynamic torque. Because the output trajectories were
obtained considering the flexible dynamics, we no longer
have to give reference commands for the flexible manipulator
to follow the trajectory like a rigid manipulator by letting the
desired strain be zero.

4. Interpretation of the Inverse Dynamic Method in
Frequency Domain

This section explains the separation of the inverse system
matrix into the causal and anticausal parts by using the two-
sided Laplace transform, and interprets the integration of each
part equation with the convolution integral method. For
simplicity, we will change the variable name g, of the



inverse dynamic equation (8) to q, -

Xl = [4)X, + [Blq,
t = [C)X, + [Fla,

Since the inverse system is noncausal (X(t) exists for r<0
and r>1, when the end-point, ¢,(t), moves only for 0<t<t),
the two-sided Laplace transform should be used to obtain the
transfer function of the inverse system.

The two-sided Laplace transform L,{ } is defined over
some strip of convergence as follows [10]:

X()=L,{X,0}

= f :.e X (ndt where «a<Re(s)<p

Accordingly, the inverse two-sided Laplace transform is
defined by

X0=L;" {X()}

1 e
=;f; c_j_e"){,(s)ds Jor a<c<f

The strip of convergence depends on the exponential
convergence rate of the time response of the function X(1).

Define the inverse system transfer function between the
input (the rigid body coordinate trajectory q, ) and the
output (the joint torque t ) as

(s)
q,(5)

H(s)= for a<Re(s)<p

Since H(s) has the same order denominator and numerator, it
is separated into a strictly anticausal function H (s), a strictly
causal function Hy(s), and a constant K. This allows that
H,(s) and Hy(s) have a higher order denominator than the
numerator to satisfy the condition of Jordan’s Lemma [11].

H(s) = H|(5) + Hy(s) + K a1y

Since the impulse response A(t) depends on the choice of
the strip of convergence, the shaded region of Figure §
between the largest negative pole, al, and the smallest
positive pole, bl, has been chosen among several candidate
strips of convergence such as Re(s)<a2, a2<Re(s)<al,
al<Re(s)<bl, ... Among them, only the shaded region

Figure 5. Contour integrals in complex plane
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provides a bounded stable time response for the inverse
Laplace transform. Because the particular strip of
convergence is chosen, H(s) is seperated to H,(s) that has
only positive poles corresponding to the eigenvalues of
anticausal part system matrix A_, and H,(s) that has only
negative poles corresponding to the eigenvalues of the causal
part system matrix A.. These explanations justify why the
inverse system matrix A; can be separated into A, having
only positive eigenvalues, and A, having only negative
eigenvalues, by using the particular transformation matrix
[Ta T.).

The inverse Laplace transform of Eq. (11) is calculated
along line AB in the strip of al< Re(s)<b! [10]. Using the
theorem on integration over large semicircles and Jordan’s
Lemma [11], the above complex-plane contour integral along
line AB of Figure 5 is calculated as follows:

1 =
for t<0 h(t) = Ejfm‘ H(s)ds

1

[ e H (s)ds + 8() K
2%jd et

=Y residue of e"H (s) + 8() K
“h () +8(OK

a1z

_ 1 =
for >0 h(f) = 2ijmf H(s)ds

1 pfevm o
2 c_j”c H,(s)ds +3() K

=Y residue of e"H,(s) + (1) K
=h() +3(K

(13)

The inverse Laplace transform of Eq. (12) and Eq. (13) gives
the impulse response function k(1) which has an anticausal
part, h (1), and a causal part, i (1).

Next, the total torque calculation adding the causal part

of the torque and the anticausal part of the torque will be
interpreted with the convolution integral.

20 = L' {H)g, o)
= f'_ h(n) g,(t-n)dn
where q(t) is defined for Ostst,, and O otherwise.

Since h(t)=h, ()~3(OK for t<0, h, (H=0 for t>0,
and h(t)=h ()+8(®)K for t20, h (=0 for t<0,

v@®=[ ?_h‘,c(n )g,(¢-n)dn + [ 5 kg t-n)dn

+[~ 8(m)Kq,(-n)dn

Taltst) + 1,(620) + K g, (0st<t)

(oo + %K a,0) + (5[0 + %K 4,0}

(14)



where t,=0 t>t, t,=01<0, ¢,=0 t<0 and r>t,

The torque Eq. (14) has the same form as Eq. (9). The first
convolution integral of 1, is equivalent to the backward
integration of the anticausal part system equation from
t, to —; the second integral is the same as the integration of
tﬁe causal part equation from 0 to «. Thus, the total torque
is composed of the anticausal ‘part torque <, the causal part
torque 1., and the input feedforward term Kgq,, which

coincides with the term [Flg, of the inverse dynamic
equation.

5. Trajectory Generation

Theoretically, the inverse dynamic equation can give a
torque profile for an arbitrary acceleration profile. However,
as Bayo mentioned in reference (3], it is important to apply
an acceleration profile that does not excite the unmodeled
dynamics of a manipulator. If the acceleration changes
sharply, the calculated torque profile may excite the
unmodeled high frequency modes of the flexible manipulator.
Furthermore, the torque frequency may be beyond the
actuator bandwidth. In addition to the above constraint, the
maximum acceleration limit should be chosen properly to
avoid saturation of the actuator and to use its full capacity for
minimum traveling time.  This constraint makes the
acceleration profile close to a bang-bang type, which will
result in unwanted high frequency problems. Therefore, the
acceleration profile has to be selected by compromising the
profile smoothness and the use of the full actuator capacity
within its limit.

Considering the above constraints, the acceleration profile
of Figure 6 was suggested. It is composed of four third-order
polynomial parts and two constant acceleration parts. The

8) Acceleration
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Figure 6. Desired end point trajectory: (a) acceleration,
(b) velocity, (c) position

parameter P is the ratio of the first part polynomial
acceleration time to the total end-point traveling time. If
P=0, the profile will be the bang-bang type. And, if P=0.25,
the profile will be very smooth by being connected with four
polynomials without constant acceleration parts. For
simulations and experiments, the P=0.2 case was used.
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6. Simulation Results of the Inverse Dynamic Control

— —— causal tq
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Figure 7. Calculation of torque with the inverse dynamic
method

This section presents simulation results to illustrate the
performance of the inverse dynamic method. First, the total
torque profile is calculated from the causal part and the
anticausal part of Eq. (9) for a given end-point acceleration
profile, as shown in Figure 7. The desired trajectories of the
output such as joint angle, joint velocity, and strains are
generated and are shown in Figure 8.
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Figure 8. Trajectory generation by using the inverse dynamic
method: (a) joint angle, (b) strain at base, and at midpoint

Second, the calculated torque was applied to the ideal
flexible manipulator model from which the inverse dynamic
model was derived. As shown in Figure 9, the end-point
follows the desired trajectory exactly; and no undershoot,
overshoot, or noticeable residual vibration occurs. However,
the strain plot shows some residual oscillations after the end-
point stops. These oscillations are due to numerical
integration errors that results from the somewhat slow



sampling frequency (150 Hz) used in the simulation, which
is the same as the sampling frequency of the experiment.
When much higher sampling frequency was used, the residual
vibration was almost unnoticeable.
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Figure 9. Simulation of the open-loop control with the
inverse dynamic method: (a) end-point position, (b) strain
at base

Next, the effectiveness of inverse dynamic trajectories,
which considered flexible dynamics, is demonstrated by
comparing the simulation results of several typical feedback
control methods. Figure 10 (curve a) is the result of a
collocated joint PD controller for a step input command. As
can be expected, the feedback of position error generates very
high peak torque at the beginning, and it excites the system
natural frequencies. Therefore, it requires relatively long
settling time. The result also shows the undershoot and the
overshoot of the end-point position.

As an alternative method, a tracking full-state feedback
controller was tried with a nominal joint trajectory. The
nominal joint trajectory means that the trajectory is generated
from the relation 8=X,/L between the joint and the end-

point position based on rigid-link assumption. Consequently,
the desired flexible coordinate values were set to zero,
q, =0, ¢, = 0. The feedback gain was selected by the LQ
rfethod. Even though the response (curve b) is better than
that of the step input joint feedback case, it still has overshoot
and requires a relatively long settling time. This poor
tracking response is due to the unnatural commands that
assign zero values to the flexible coordinate commands
without considering flexible dynamics. If a more natural
reference commands of flexible modes are used, which was
obtained from the inverse dynamic method, we can obtain
good tracking performance. Figure 10 (curve c¢) shows
almost no tracking errors, no overshoot, and no vibration,
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This comparison clearly demonstrates the advantage of
complete state trajectory generation by using the inverse
dynamic method.

End Point Position
60

Displ. (in)

- Desired
w— Step input (8)
— — Nominal traj. (b)
T nverse . tros. (o)

10 " N . " s L
0.0 02 04 06 08 1.0 1.2 14 1.6 1.8 20 22
Time (sec )

Figure 10. Comparison of typical trajectories for
feedback control methods: a) step input for joint
feedback, b) nominal trajectory for full state feedback,
¢) inverse dynamic trajectory for full state feedback

7. Experimental Results

Although the open-loop control with the inverse dynamic
method showed the good simulation results with an ideal
model in Figure 9, it produced a large positioning error with
the experimental manipulator due to the effects of the joint
friction. Therefore, a tracking controller was designed with
the feedforward inverse dynamic control as shown in Fig. 11.
A joint feedback control loop was added to provide
robustness to the system, and a friction compensation loop
was also added to cancel the effect of the friction force.

Yd Inverse End Pt. Trejectbry
tvd Generatian
Dynamics
Xea.Xev, Xep
+ Y-y + i Plant
$ X -3 Flaexible Y
- ¥ * Manipulator
Friction r
Compen. ]

Figure 11. Tracking control scheme of the experiment

The combined tracking control scheme of the inverse
dynamic feedforward control and the feedback control was
implemented to the single-link flexible manipulator. The
manipulator used in the experiment has a 47-in.-long arm and
a 0.1 LB end mass. It is driven by an Inland D.C. servo
motor with a current amplifier. For a real-time control, a
Micro Vax Il was used with 12-bit A/D and D/A boards.
The off line calculation of the trajectory and the torque
profile was also performed by using the Micro Vax,

By applying the precalculated torque, compensating the
joint friction, and using the feedback of the tracking error at



the joint, the excellent results of Figure 12 were obtained.
The flexible manipulator could stop without any overshoot or
any residual vibration after it moved 40 in. (48.76 degrees)
within less than 0.8 s. In the strain signal, rough jerk exists
that could be eliminated by using a smoother acceleration
profile. Unfortunately, since the end-point position sensor
was not available, the end-point position could not be
measured directly.  However, the end-point tracking
performance can be estimated from the joint tracking and the
strain tracking result. If the joint does not have any
overshoot or vibration and the strain does not show any
residual vibration, the end-point can be presumed to stop
without any overshoot or vibration.
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Figure 12. Experimental results of the tracking control
combined with the inverse dynamic feedforward control and
the joint feedback control: a) joint angle, b) strain at the base

In the experiment, only joint angle and joint velocity
signals were used for feedback. The experimental results
show that a simple joint feedback PD controller performs
excellent tracking, if it is combined with the inverse dynamic
feedforward control, and if the joint trajectories are provided
considering the flexible dynamics.

8. Conclusion

The proposed inverse dynamic method provides a simple
wdy to generate the required torque profile and entire state
trajectories in the time domain for a flexible manipulator.
The use of the generated flexible coordinate trajectories
showed much better feedback tracking performance than the
case of nominal trajectory commands based on rigid-link
assumption in simulation. In laboratory experiments, the
feedforward control using the inverse dynamic method
showed good wacking performance with a simple joint
feedback controller. It was observed that the measured
outputs showed very small tracking error, no overshoot, and
no oscillation; and they agree well with the simulation results.
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The characteristics of the inverse dynamic system of a
flexible manipulator were newly interpreted with the use of
causal and anticausal concepts. Based on these concepts, the
time-domain inverse dynamic method was interpreted in
frequency domain in detail by using the two-sided Laplace
transform in the frequency domain and the convolution
integral.

Although several successful results of this method are
mentioned, this inverse dynamic method is limited to linear
systems. In order to be extended for a multilink flexible
manipulator, this method should be incorporated with a
nonlinear inversion technique, or the dynamics of the
manipulator should be linearized along the desired end-point
trajectory.

References

1. Asada, H. and Ma, Z., "Inverse Dynamics of Flexible
Robots," Proceedings of the American Control Conference,
pp. 2352-2359, 1989.

2. Bayo, E., "A Finite Element Approach to Control the End-
Point Motion of a Single-Link Flexible Robot," Journal of
Robotic Systems, Vol. 4, No. 1, pp. 63-75, 1987.

3. Bayo, E. and Paden, B., "On Trajectory generation for
Flexible Robots," Journal of Robotic Systems, Vol. 4, No. 2,
pp. 229-235, 1987.

4. Bayo, E. and Moulin, H., "An Efficient Computation of the
Inverse Dynamics of Flexible Manipulators in the Time
Domain," Proceedings of IEEE Conference on Robotics and
Automation, pp. 710-715, 1989,

5. Cannon, R. and Schmitz, E., "Initial Experiments on End-
point Control of a Flexible One-Link Robot," International
Journal of Robotics Research, Vol. 3, No. 3, pp. 49-54, 1984.
6. De Luca, A. and Siciliano, B., "Joint-Based Control of a
Nonlinear Model of a Flexible Arm," Proceedings of the
American Control Conference, pp. 935-940, Atlanta, June
1988.

7. Hastings, G. and Book, W. J., "Experiments in the Optimal
Control of A Flexible Manipulator," Proceedings of the
American Control Conference, pp.728-729, Boston, 1985.

8. Oosting, K. and Dickerson, S. L., "Simulation of a High-
Speed Lightweight Arm,” Proc. of IEEE International
Conference on Robotics and Automation, pp. 494-496,
Philadelphia, 1988.

9. Wang, D. and Vidyasagar, M., "Modelling and Control of
Flexible Beam Using the Stable Factorization Approach,”
Proceedings of ASME Winter Annual Meeting, Robotics:
Theory and Application, Dec. 1986.

10. Pol, Balth. V. D. and Bremmer, H., Operational Calculus
Based on the Two-Sided Laplace Transform, University Press
at Cambridge, 1955

11. LePage, Wilbur R., Complex Variables and the Laplace
Transform for Engineers, McGraw-Hill Book Co., 1961

12. Kwon, D.-S. and Book, W. J., "An Inverse Dynamic
Method Yielding Flexible Manipulator State Trajectories,”
Proceedings of the American Control Conference, Vol. 1, pp.
186-193, San Diego, May 1990.



