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ABSTRACT

An automated machining system involves concurrent use of manufacturing
resources, alternative process plans, and flexible routings. High investment in
the installation of automated facilities requires an efficient scheduling system
that is able to allocate the resources specified for operations over a
scheduling horizon. The primary emphasis of this paper is to generate schedules
that accurately reflect details of the automated environment and the objectives
stated for the system,

In this paper, a scheduling algorithm for automated machining is presented.
Using the previous simulation research for this topic, a rule-based scheduling
system is constructed. An architecture for an intelligent scheduling system is
proposed, and the system has a high potential to provide efficient schedules
based on the task-specific knowledge for the dynamic scheduling environment

I. INTRODUCTION
Automated machining systems may involve sophisticated information systems to
control automated equipment, The equipment typically includes (Groover 1987):
+ Automated machine tools to process parts
- Automated assembly machines
- Industrial robots
- Automated material handling and storage systems
+ Computer hardware for planning, data collection, and decision making to
support manufacturing activities
The benefits offered by automated manufacturing systems are as follows
(Cowan 1985)
- Fast response to market demands
- Better product quality
- Reduced cost
- Better resource utilization
- Reduced work in process
- Flexibility
With the development of automation technology, its supporting systems -
planning, scheduling, and control - have gained importance. Production
planning involves establishing production levels for a known length of time,
It determines production parameters, such as product mix, production levels,
resource availability, and due dates. With the specified production
parameters, the goal of scheduling is to make efficient use of resources to
complete tasks in a timely manner (Newman and Kempf 1985). There have been
extensive studies on scheduling manufacturing systems. These studies can be
divided into three basic approaches :
- Operations Research (OR) approach
- Artificial Intelligence (AI) -based approach
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. Combination of OR and Al-based approaches

The literature on scheduling manufacturing systems using operations research
techniques is rather extensive. Panwalkar and Iskander (1977) divided these
studies into the following two categories:

. Theoretical research dealing with optimization procedures
- Experimental research dealing with dispatching rules

Cohen and Feigenbaum (1982) categorized expert systems in manufacturing as
hierarchical, non-hierarchical, script-based (skeleton), opportunistic, and
constraint-directed expert systems. The most common characteristics in expert
systems category are as follows (Shaw and Whinston 1986):

- on-line decision support,

. schedule operations dynamically,

- coordinate manufacturing resources,

- synchronize processes for different jobs, and
. monitor the execution of plans,

Several surveys of expert systems for manufacturing applications have been
published in the literature (Steffen 1986, Jaumard et al. 1988, Kusiak and Chen
1988, Marucheck 1989). The operations research-based approach usually focuses
on finding the "best” schedule under the deterministic constraints, while a
number of artificial intelligence approaches focus on finding of a "feasible”
schedule subject to probabilistic constraints. As pointed out in Phelps (1986),
there are some of similarities between the two approaches:

. face similar problenms,

. use models for problem solving,

. use heuristics when optimal methods are not suitable,use mathematics,
. use computers for their implementations, and

. employ interdisciplinary analysts and designers.

0’'Keefe et al. (1986) presented a view that expert systems and operations
research methods are complementary instances of a broad range of decision making
tools. Kanet and Adelsberger (1987) suggested that the expert scheduling
systems of the future will have the reformulative ability (by expert system
techniques) along with the best available algorithmic scheduling knowledge (by
operations research techniques). Jaumard et al. (1988) identified operations
research tools can be useful in intelligent problem solving.
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Perhaps the most promising architecture that is able to incorporate
operations research and artificial intelligence techniques in scheduling
manufacturing systems is the tandem architecture (see Figure 1) suggested by
Kusiak (1987). The tandem system has been designed so that a knowledge-based
system interacts with algorithms. The algorithm deals mainly with quantitative
and deterministic component of the scheduling problem, guaranteeing rigorous
generation of schedules. At the same time, the knowledge-based system deals
mainly with qualitative and probabilistic elements of the scheduling problem,
Incorporation of the two approaches is possible through the communication
channel. In the subsequent sections, a rule-based scheduling system implemented
in the tandem architecture is described. A tandem expert system architecture
considered in this paper has the following characteristics (Kusiak and Chen
1988)

+ Capability of solving difficult problems

- Flexibility for solving problems of various types

- Modularized development and implementation

- Sharing of intellectual resources with other control and management
systems

» Increased role of communication between subsystems

II. THE SCHEDULING FRAMEWORK

Scheduling an automated machining system involves concurrent use of
manufacturing resources, alternative process plans, and flexible routings.
Kusiak and Ahn (1990) developed a dispatching rule (MDR rule) which has been
designed to maximize the utilization of resources in a resource-constrained
machining system, Ahn and Kusiak (1990) analyzed the performance of a number
of dispatching rules for various scheduling scenarios. The analysis was done
under the assumption that the required data are complete and certain.
Likewise, the objectives were assumed to be specified in advance, In many
practical applications, however, scheduling under the assumption that data are
complete is not practical due to unpredictable and changing manufacturing
conditions. For the schedules to be flexible so that they could be updated and
modified in response to the changes in the scheduling environment, algorithms
should be integrated with a rule-based system.

II-1. Scheduling Algorithm
The scheduling algorithm has been implemented so that static as well as
dynamic part arrivals are handled. Before the algorithm will be presented, the
following notation and definitions are introduced:
fik : completion time of operation k
rik : remaining processing time of operation k

sk '@ status of operation k ;
r 1, if operation k is schedulable ,
| 2, if operation k is nonschedulable ,
sk = { 3, if operation k is being processed ,
| 4, if operation k has been completed |,
' 5, if operation k satifies the first two conditions in the

definition of schedulability
srcr : status of resource r of type ¢ :
(1, if resource cr is avaliable ,
Sr'ecr =
L' 0, otherwise
Sj : set of operations with sk = j, j=1,...,5
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Cj : temporal set of operations

Scheduling Algorithm
Step 0. Initialize the variables,
. Set current time t = 0
. Set resource status, srcr = 1, for all r and ¢
. Operation status and sets of operations with the operation status are
initialized as follows :
(i) Set S1=S2=53=54=0
(ii) For each part, if operation k has no predecessor operations then
sk = 1; otherwise, sk = 2
(iii) Construct Si and Sz for operations in (ii)
Step 1. If all the operations have been completed, STOP:otherwise go to Step 2.
Step 2. If S;= @, go to Step 5; otherwise, go to Step 3.
Step 3. Select an operation k*q# in the set Sj, based on a dispatching rule
provided ( part i* corresponding to operation k*q# is automatically

selected ).

Step 4. Set :
. Remaining processing time of operation k*, rtkx = tikxq#
. Resource status srcr = 0 for cr SRkxq#
Construct :

.Cy = {q ! geAisk=s\ q* }

.Cz = {kq | kq*=q#, [k*q#,kqleQi®, kqeSi}
.C3 = {kq ! {k*q#, kq}eNer for all c and r, kqeS1}
Update :

. Set of schedulable operations Si = S1 - {k*qz} - {Ci Ucz VUCs}

. Set of nonschedulable operations Sz = Sz Ucz2 UCs

. Set of processing operations S3 = S3 U {k*q#}

If Si# @ , go to Step 3 ¢ otherwise, go to Step 5.

Step 5. Set

. Completion time fx = rtk + t, keS3

« Current time t = t + 1

- Remaining time rtk rtk - 1

If rtks=0 in keS3, then resource status srcr = 1 for cr €R kxqs#
Step 6. In set Sz, construct :

-Cp = {kq ! all the preceding operations of operation kq have been

completed }

-Cz = {kq ! srer = 1, cf €Rkq}

.C3 = {kq | current time - completion time of the immediate preceding
operation of operation kq > v[immediately preceding operation
of operation kq , kql}

Update :

. Set of schedulable operations S; = S1 N{C1 NCz NCs}
Set of nonschedulable operations Sz = Sz - {C1 fiC2 fiICs}
Set of processing operations S3 = S3 - {k*}
Set of completed operations Ss = Sg U {k*}
Step 7. Go to Step 1.

i

I -2. Rule-Based Scheduling System

In the algorithm presented in the preceding section, once a dispatching rule
is selected, all parts are scheduled regardless of manufacturing conditions.
In some cases, the schedules may be infeasible due to unpredictable and changing
manufacturing conditions (eg., blocking or machine breakdowns). Moreover, it
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is evident that the "blind” selection of a dispatching rule might result in an
inefficient schedule.
In this paper, the manufacturing conditions are divided into the following
categories:
1. Exogenous manufacturing conditions
- scheduling objectives (eg., maximization of resource utilization,
minimization of the number of tardy parts, and so on.)
- system load levels
- resource constrainedness (the ratio of the number of constrained-
resources to the number of unconstrained-resources)
- due date assignment (eg., constant, slack-based, total work-based, and
so on)
- due date tightness
2. Endogenous manufacturing conditions
- changing shop status (eg., inventory status, queuing status, bottle-
neck resource status, machine breakdown, and so on)
- preference constraints (priority of temporal scheduling objectives)
Based on the two categories of manufacturing conditions, appropriate
dispatching rules and scheduling algorithms are selected (exogenous

manufacturing condition), and/or modified (endogenous) by a rule-based
scheduling system, The need to construct such a system arises from the fact
that :
1. An automated manufacturing system requires a dynamic and accurate
scheduling,

2. There is no evidence in the literature that there exists a dispatching rule
that performs best under all manufacturing conditions.

3. The existing scheduling studies present the performance of dispatching
rules only for narrow domains,

4. The computational results indicate that combining the MDR and other
dispatching rules may depend on the manufacturing conditions.

A rule-based system developed in this paper consists of four components
algorithm selector, rule selector, process reactor, and rule base,
Algorithm Selector
Algorithm selector determines a scheduling algorithm to be used in solving a
problem considered, It comprises of a set of production rules or,
alternatively, a user may specify the name of the model desired. One of the
main advantages of the tandem archtecture is that it handles multiple models.
In this paper, only one algorithm is introduced while there are many other
scheduling algorithms available in the literature (see for an example Kusiak
1990).
Rule Selector
Rule selector provides a global dispatching rule for the schedul ing
algorithm, based on the exogenous manufacturing conditions. A global
dispatching rule selected is fired whenever a dispatching decision is made (see
Step 3 of the algorithm), unless there is a significant change in the machining
shop status during the scheduling horizon. Once an inadmissible change is
detected on the shop floor, the process reactor is activated to minimize the
schedule disruption. The process reactor fires a temporary dispatching rule.
If the equilibrium on the shop floor is restored, then the global rule begins
dispatching operations,
Process reactor
Process reactor communicates on-line with the manufacturing facility in
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order to respond to the endogenous shop conditions. it modifies the processof
selection of dispatching rules in the "warning” state, and imposes selection of
operations in the “urgent” state. A warning state is issued when the system is
likely to generate infeasible schedules, for example, the number of waiting
parts in front of a machine exceeds 75% of its capacity. In the warning state,
the process reactor consults with the rule base, and it assigns a temporary
dispatching rule that may help attaining a normal condition, The selected
temporary dispatching rule is used by the rule selector. An urgent state is
issued when the schedule obtained is infeasible or it might become infeasible in
the next scheduling time horizon due to, for example, blocking or preventive
machine maintenance, If the above immediate situation calls for action
extraneous to the dispatching rule, then the process reactor takes exception to
the rule (see Step 4 and 6 of the algorithm). This is also possible through
the communication with the rule base.
Rule Base
Rule base plays an important role in the entire scheduling processes. All
the production rules in the rule base are divided into the following classes :
Class 1. Selects an appropriate algorithm to solve the problem (model
selector).
Class 2. Selects an appropriate dispatching rule to solve the problem
{rule selector).
Class 3. Modifies the selected dispatching rule to solve the problem
{process reactor),
Class 4. Selects an appropriate operation to solve the problem (process
reactor).
Several sample production rules are presented next.
Class 1
RULE1 1. IF the machining system has more than three machines
AND the number of operations in all the parts being scheduled exceeds 20
AND the scheduling problem considered has alternative process plans
AND traveling times are imposed
THEN solve it using the scheduling algorithm (presented in this paper)
Class 2
RULE2_1. IF the machining system has more than three machines
AND the number of operations in all the parts being scheduled exceed 20
AND the scheduling problem considered is static
AND the scheduling objective is to minimize the makespan
AND the resource constrainedness is high (RC > RC2)
THEN use the MDR/MSWR dispatching rule,
RULE2_2. IF the scheduling problem is dynamic
AND the scheduling objective is to minimize the number of tardy parts
AND the resource constrainedness is medium (RC1 < RC < RC2)
AND due dates are assigned with MWR method
AND the system is light-loaded
THEN use the MDR/COVERT 1 dispatching rule.
RULE2_3. IF the scheduling problem is dynamic
AND parts are produced for safety stock
AND the resource constrainedness is meduim (RC1 < RC < RC2)
AND the system is heavy-loaded
THEN use the LWR dispatching rule.
Class 3
RULE3_1. IF the machining system has more than three machines
AND the number of operations in all the parts being scheduled exceeds 20
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AND the scheduling problem considered is static
AND the Work-in-process, W > W0
AND the LWR dispatching rule is not used
THEN replace the current dispatching rule with the LWR rule.
Class 4

RULE4_1. IF the number of parts waiting in front of a bottleneck machine
THEN override the current dispatching rule
AND find a feasible schedule.

RULE4_2. IF a machine is down
THEN set the machine status to unavailable during that interval,

Il-3. Knowledge Acquisition

An intelligent system should have learning ability. A system that learns
is able to improve its own problem solving ability. In this section, a
discrete simulation assisted knowledge acquisition process is described. The

simulation is used for knowledge acquisition due to the following (Thesen and
Lei 1986, 0’'Keefe 1986) :
- No domain experts are available,
- It is possible to build models that can predict the effects of input
parameters on output measures.
- Practical rules of thumb and experience are needed to use simulation as
an effective tool,
Computer simulation is a problem solving process of predicting the future
state of a real system by studying an idealized computer model of the real system.

Table 1. Dispatching rules generating the best and the second best solutions in
the static machining system for various performance measures

RC

?gg;ance Solutions High ediun Lov
Best solution LWR LWR LWR

AV Second best solution|{ MDR+LWR MDR+LWR | MDR+LWR
Best solution MDR+SPT MDR+SPT SPT

AF Second best solution SPT SPT MDR+SFT
Best solution MDR+MSWR | MDR+MSOR MSOR

A Second best solution MSWR MDR+MSWR| MDR+MSOR
Best solution MDR+COVERT2| MDR+MSR MSR

o Second best solution|{MDR+COVERT1 MSR MDR+MSR

MT Best solution MSR MSR MDR+MSR
Second best solution| MDR+MSR MDR+MSR MSR

Best solution MDR +MSR MSR MDR+MSR
AT Second best solution MSR MDR+MSR MSR
CAT Best solution MDR+MSR MDR+MSR MSR

Second best solution MSR MSR MDR+MSR
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Simulation experiments are usually performed to obtain predictive information
that would be costly or impractical to obtain with real devices (Widman and
Loparo 1989). In our simulation, two normalized performance measures for parts
and five measures for schedules (runs) are considered :

. Normalized Average Waiting (AW) time

. Normalized Average Flow (AF) time

. Normalized Average Makespan (AM)

. Normalized Average Percent Tardiness (PT)

. Normalized Average Maximum Tardiness (MT)

. Normalized Average Tardiness (AT)

. Normalized Conditional Average Tardiness (CAT)

Tables 1 illustrate partial knowledge obtained by simulation, For the

details of simulation and output analysis, see Kusiak and Ahn (1990),

III. SUMMARY

In this paper, an intelligent system for scheduling automated machining was
presented, By incorporating operations research and artificial intelligence
techniques (tandem architecture), the proposed system has a high potential to
provide efficient schedules reflecting details of the automated machining
environment and accomplishing the objectives of the system.

The current implementation of the system is being improved, More

elaborate knowledge acquisition methods are being sought. Other scheduling
algorithms can be easily incorporated into the existing system.
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