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1. Introduction

In recent years, the finite element method
has become one of the most popular numerical
technique for obtaining solutions of engineering
science problems, However, there exist various
uncertainties in modeling the problems, such as
the dimensions( geometry shape ), the material
properties, boundary conditions, etc.

The consideration for the uncertainties
inherent in the problems can be made by
understanding the influences of uncertain
parameters [ 1 ].

Determining the influences of uncertainties
as statistical quantities wusing the standard
finite element method requires enormous
computing time, while the probabilistic finite
element method is realized as an efficient
scheme [ 2, 3 ] \yielding statistical solution

with just a few direct computations.

In  this paper, a formulation of the
probabilistic fluid-structure interaction problem
accounting for the first order perturbation of

geometric  shape is derived, and  especially

probabilistical acoustic pressure scattering from

the structure with surrounding fluid is focused
on. In Section 2, governing equations for the
fluid-structure problems are given. In Section
3, a finite element formulation, based on the
functional, is presented. First order
pertubation of geometric shape with randomness
is incorporated into the finite element
formulation in conjunction with discretzation of
the random fields in Section 4 and 5.

Finally, the proposed formulation is applied
to a acoustic pressure scattering problem from
an infinitely long cylindrical shell structure
with randomness of radial perturbation,

_g; Governing Equations
Assuming the fluid is inviscid,
incompressible, and has no body forces acting
on it, the irrotational flow which obeys a
barotropic state and undergoes small motions
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can be governed by the following wmomentum
equation and the continuity equation:
P + p,6 = 0  in Q (2.1)
and
Io v vs =0 ina (2.2)
BP® F :
respectively where p is the pressure: B is the
bulk modulus: pfr is the fluid density: ¢ is
a flow potential such that

v} = v¢ in Q (2.3)
where {v} is the velocity of the fluid
particle; Qr 1is the fluid region: V2 denotes the
Laplacian operator: the superposed dot denotes
time differentiation: and y2 denotes the
Laplacian operator: the superpoed dot denotes
time differentiation: and ¥V denotes the
gradient operator.

In the structure region, the motion of the
solid can be governed by
divic} + (b} = p{u} in Qs (2.4)
{o} = [D] {e} in Qs (2.5)

1 .
et = —=|Wul + (Hul)T in Qs (2.6)
2

with prescribed boundary conditions

[el tn} = (t} in Q¢ (2.7

tul = {u} in  Qu (2.6)
where [ o] is the symmetric Cauchy stress: {b}
is the body force; o 1is the density: {u} is
the displacement; [ D] is the tangent moduli:



{n} is the outnormal wunit vector: and the
structure region Qs is decomposed into Q¢

and Qu.

At  the fluid-structure interface, the
following boundary condition can be obtained
from the momentum and the continuity
consideration:

{n}vp + pF{n) {u} = 0 onaQr (2.9)

where 8Q1 is the interface between the
structure and the fluid regions.

3. Finite Element Formulation with Scattering
Pressure

Euler equation and boundary conditions given
as in the previous section can be derived
from the corresponding functional: Equations
(2.1) and (2.2) can be obtained by taking the
first variation of the functional given by

Jrlp. ¢, A1 —[“H Lo veTie - L aa
Fle.o. wl o 27 2B
+JQA1(p+pF'¢')dQ dt (3.1

with to € t < t1 and §¢(to) = Sl(ty) = 0
where § implies the first variation: the first
and second terms in the first integral
represent the kinetic and potential energies of
the fluid, respectively : and A1 is the Lagrange
multipliers to be determined such that the
equlibrium equation (2,1) is satisfied in the
fluid,

The fulid-structure
included by adding following terms to the
functional equation (3.1)

interaction can be

t
Jilp. é.lut Az] = J’[—J {ulinip dr
t aQ

0
1

¥ J A2 (p+n_ o) dl‘}dt (3.2)
a()I F

where the first integral 1is the work done by
the normal component of the structural
displacement and the pressure at the interface.
The equilibrium condition between p and ¢ is

enforced with the Lagrange multiplier A2 .

For the Structural part, the functional is
expressed as

ty

1 . .
Js[(u}]=J HQ(—EplguhumJ(o)

s

to

~tuliby) ao - Lo{uh?)dr] dt (3.3)

t

where the first integral contains the kinetic
and potential energies and the potential of the
body force: and the second term represents the
potential of the external traction,

A three field mixed functional J [ p.¢,{u}, A
t,A2] «can be derived by combining equations
(3.1), (3.2) and (3.3). The Lagrange multipliers
Ay and Az can be determined to satisfy
equations (2.1) - (2.9). The resulting three
field mixed functional is given by

J—Jt'“ (l \7<;$T\7<i>+l 2+£F ‘¢.)dQ
tl Jo, 27 2B "B P

JaQIpF<u¥<u)osdr

+

1 o
L)s(—ép;{u;{u} + {alo)—{utb)) do

Lo(uhtmr]dt (3.4)

t

For convenience, the pressure p is spilitted
into the incident part and the scattered part

p = pi + ps (3.5)

and the infinite fluid boundary consideration
is incorporated by using the silent boundary
condition [ 4 ].

With the Galerkin type of finite element.
approximation,

{u} = X [N]{u} (3.6)

{p)* = T (Ll {p) (3.7)

and with a new fluid unknown such that

{p}s = —{q} (3.8)

the necessary and sufficient condition for the
stationarity of the functional, J, and the
integration by parts in time yield two set of
equation:
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ful

[[M] [03]{ u }+{[01 [MJsFHm;}
tolr-alilltay /T limiirt-c1r [l a}
[[K] [O]H{u>} _ {(f) } (3.9)
[0] [-G1llta} {f)rF
or simply,
[MT{d) + [CT{d} + [K]{d} = [F]
(3.10)
where
(M1 = JQ.O[N]T[N]dQ (3.11)
1
= | [LT[L]dQ (3.12)
[l BL}F[ TrLa
[M]sr = J INTOLY (n)dF  (3.13)
Q1
[c] = —J fLirLlar (314
ch 30FB
[K] = L)[B]T[D][B]dQ (3.15)
1
[G] = - J [AT[AldQ (3.16)
0 aQF
F
(f) =-LQI[N]Tﬁp>i{n)d[‘
T
+ jostm b} dQ
+ J [NI1 {t}dr (3.17)
Qe
‘f}r=J (LT (0 tn)dr (3.18)
aQF
In the above, matrices [B)] and [A] are
the gradient of the matrices [NJ] and [L 1],
respectively,

4. First Order perturbation of Geometry

The perturbation methods [ 5 ] presume that the
pertubation is a continuous function of a
parameter ¥ which measures the strength of
the perturbation,

The application of first order pertubation
techniques involves the expansion of all
random functions about the mean of random field
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field
terms. For
and {(p} s

the random
order

{u)

. b(x). where b (x) is
and retaining up to first
example, the random functions

are expanded about E (x) as follows:

{u) ful® + o {u}” (4.1)

(4.2)

0 .
ps ps + 7 p*
parameter representing the
in b (x): the zeroth
represent the zeroth and
respectly,

where 7 is a small
magnitude of

and first

randomness
primes
order variations,
in b (x).
The geometry-dependant quantities
surface and volume Jacobian and
of the functional variables
similar manner

3]

first due to
variations
such as the
the gradient
are expanded in a

to equations (4.1) and (4.2) [

5. Discretizing in Random Fields

The

frequency transfer function approach is
often used for the vibration analysis of
linear systems. the efficiency of the approach
depends on the frequency band over which the
vibration analysis is required.

In this section a random finite element
formulation is carried out for the transfer
function matrix.

The system's equation (3.9) can be
expressed, in frequency domain, as

[H(iw) 1[d (i) ] =([F (iw)]

Ci=yop ) (5.1)
where [d (iw) ] and [F(iw) ] are the
Fourier transforms of [d (t) ] and [F (t
) 1], respectively: and [H (iw) ] is the
transfer function matrix for the frequency of

harmonic excitation, .

If random function b (x) where x is the
spatial coordinates is introduced during the
process of finite element discretization, the
transformed response vector, the forcing matrix
can be denoted by [d (b) ] [F(b) ] and

[H (x. b) ]. respectively.

As in the finite element method, the random
function b (x), the expectation of b (x),
and the covariance of b (x) are approximated
by

q
b (x) = X N; (x) bi (5.2)



q
E[b(x)]':.lei(X)E[bi] (5.3)
i=
and
cov (b (xx).b (x1))

q
= ETNi (xx) Nj (x1) cov (bi.bj) {5.4)

i=1
where Nj (x) represents the prescribed shape
functions and bi is the values of b at {x}i,
i=1,2, .,q where q is the number of random

functions,
Appling the Taylor series expansion to
equation (5.1) the expansion of [H1., {d}
and [F ] about the mean value of the random

function, {b} ,with a small perturbation )

yields the following equation:

[H(b)1 = [ﬁ]+e_§[ﬁ]mAbi+0(en
(5.5)

{d (b)) = {T)+e 2 (d)einbi+0 (2)
(5.6)

[F(b) 1] = [F]'FE__E‘::[F]biAbi'FO (e2)

(5.7)

where [H], {d) and [F ] denote the mean value

of [HY, {d} and [F1 respectively: [H Isi.
{d} bi and [F 1bi are the first derivatives with
respect to bi evaluated at {b}, respectively.
The [HJlbi can be calculated by
- afM]1* om*e
[Hlbi = —w?2-——"r
a{m} * obi
aC* ac*e aK* ak*e
+ iw + (5.8)
éc*e  abi ak*e oabi
Substituting equations (5.5) - (5.7) into
equation {5.1) and collecting terms of zeroth
and first orders of & yield the following
equations:
[H] {d} = I[F] (5.9)

[HI{d}e = [Flu (i=1--.0q (510

where

[F1ii = [FJlsi — [HIlbild} (5.11)
Remarks :

Equation (5.9) - (5.11) can also be obtained
by substiting the first order expansion of a
random function-dependant quantities such as
equations (4.1) and (4.2) into the first
variation of functional eq. (3.4) and collecting

terms of zeroth and second terms of 7.

6. Numerical Application
The probabilistic finite element formulation
derived in Section 2 - 5 was applied to the 2-D

scattering from an
shell
depicted in
the structure

infinitely long
structure  with
Fig.1. Radius and
are 0.5m and 0,.0lm,
properties are E =
2.0 X 1012 N/m? and p = 7500 kg/m3.
For the fluid, 1500 m/sec and

density is 1030 kg/m3. The loading is assumed to be

problem of
cylinderical
fluid, as
thickness of

surrounding

material
v =0.3
wave speed is

respectively. The

a plane wave, p = eilkx*¥) yjth kd = 2.0.
The shell structure was modeled with the

degenerated three node 2-D shell elements [ 6 ]

and the fluid with 2-D quadrilateral nine node

plane strain elements, The thickness in the

z-direction for the model is chosen as lm. By

symmetry only half of the problem needs to be
modeled with 30 shell elements and 210 fluid
elements. Rayleigh damping 1is included in the
shell structure.

The random radius of the shell structure is

normally distributed with a coefficient of
variance equal to 0,01, The random field is
discretized such that the number of random
variables (q) is 30.

The enfluence of radius, with a constant
pertubation of + 0.05 m, on the scattering
acoustic pressure is illustrated in Fig. 2.

The + 30 ( ¢ : standard deviation ) bounds
of the scattering pressure are plotted in Fig.
3 for the pertubation of 0.05c0s30 in the
circunferential direction, with 1% of standard
deviation in the magnitude of the pertubation,

The =+ 30 bounds for the pertubation of
0.025cos50 with 5% standard deviation are shown
in Fig. 4. The enfluence of the correlation
coefficient { 7 ) between the two pertubation
patterns is illustrated in Fig. 5(a) and Fig.
5(b) for 9 =0.5 and 7 = -0.5 respectively.
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7. Concluding Remarks

The proposed probabilistic first  order
pertubation technique can be easily incorporated
into a widely wused finite element analysis
software, The advantage of this method is that
the effect of the uncertainty of shape can be
observed such that the solutions can be
expected within bounds, for example,
with the confidence level of 3o0.
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Fig. 1 Cylindrical shell structure with WAVE
surrounding fuild, being subjected to a
plane acoustic wave
———— e ——— — R=d+0.1d
R=4d
.......... R=d-0.1d o —

Fig. 2 Scattered pressures on the surface
of a shell structure with radius
of d+ 005m and ka = 2.0

Fig. 3 * 30 bounds for scattered pressure
with the radius pertubation of 0,05cos6
and ¢ = 0.01
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Fig. 4 + 30 bounds for scattered pressure

with the radius pertubation of 0. 025co0s8 \
and ¢ = 0,01

(a) correlation coefficient = 0.5

(b) correlation coefficient = -0.5

Fig. 5 * 30 bounds for scattered pressure
with the radius pertubation of 0, 05cos6
+ 0.025cos50 and o = 0.01
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