특정 주파수 모의신호 발생을 통한 수중음파의 전달손실 측정

나영남, 장덕흥, 김성일, 한정우 (국방과학연구소)

<u>요 약</u>

수심 100m 이하 천해에서 저주파 대역 음파의 전달손실 양상을 규명 하기 위해 한국 동해 남부해역 3개 정점에서 특정 주파수 모의신호 발생 을 통한 전달손실을 측정하였다. 10개의 특정 주파수에 대해서 연속파(Continuous Wave)를 발생시킬 수 있는 저주파 음원기를 5 kts의 속도로 예인하고, 3개 정점에 고정 설치된 DIFAR 센서를 통하여 이 신호를 수신 한 후, 다시 육상으로 무선전송하여 각 센서에서의 수신준위를 정확하게 보정하였다.음원으로부터 DIFAR 센서까지의 전달손실은 거리에 대한 Log 함수로 표시할 수 있었으며, 주파수별 전달손실을 비교, 분석한 결과 동 해 남부해역에서의 최적 주파수는 800Hz 내외에서 존재하는 것으로 추정 된다.

I 서론

천해에서 음파가 전달될 때 주파수에 따라서 손실되는 양이 다르고, 따라서 최소의 전달손실을 갖는 소위 "최적 주파수(Optimum Frequency)" 가 존재한다[1-4]. 이 최적 주파수는 여러 실험 결과와 수학적 모델을 통해서 주어진 해역의 해양/음향학적 환경 변수(수심, 음속구조, Shear Wave Coupling Loss, 퇴적물의 유형, 퇴적물의 음속변화등)와 관련되어 있는 것으로 알려져 있다. 그러므로 최적 주파수는 특정 해역에서의 해 양/음향학적 특성에 따라서 다를 수 밖에 없다.

Fig.1은 천해에서 음파의 전달손실을 좌우하는 주요 인자들을 요약 하여 표시하고 있다. 고주파 대역에서의 전달손실은 주로 수중에서의

Fig.1. Diagrammatic summary of the major factors that control propagation loss in shallow water[after Akal,5]

체적 감쇄(Volume Attenuation)와 표층, 해저면에서의 산란(Scattering) 에 의해서 일어남을 알 수 있다. 주파수가 감소함에 따라 두가지 기작 (Mechanism)에 의한 영향은 점차 감소하게 되고 퇴적층에서의 감쇄가 가 장 큰 요인으로 된다. 그리하여 Fig.1에서와 같이 고주파와 저주파의 사 이에 최소의 전달손실을 보이는 최적 주파수가 존재한다.

본 실험에서는 한국 동해 남부해역에서 최적 주파수를 규명하기 위해 10개의 주파수에 대해 각각 다른 음원준위 신호를 발생할 수 있는 음원 기(HX-29)를 이용하여 전달손실을 측정하였다.

II 실험 방법및 자료 분석

2.1 실험 방법

Fig.2는 수중음파의 전달손실 측정을 위한 개략적인 모식도이다. 수 상함이 5 kts의 속도로 음원기를 예인할 때 해저에 설치된 DIFAR 센서가 음원기로부터의 신호를 수신한 후 해상의 안테나를 통해 육상에 무선전

Fig.2. Schematic diagram of the measurement of propagation loss using low-frequency source maker.

송하게 된다. 육상에서는 수신된 음향신호를 녹음하고 분석하여 음원과 수신기(Receiver) 사이의 전달손실을 최종적으로 계산하게 된다. 수신기 인 DIFAR 센서 ①, ②, ③은 각각 수심 55m, 40m, 75m에 설치하였다.

한편, 저주파 음원기에서 발생되는 음원의 각 주파수별 음원준위는 Table 1과 같다. 또한 음원기로부터 3m 거리에 Hydrophone을 설치하여 정확한 음원준위의 유지 여부를 점검하였다.

Freq.(Hz) Source Level		Freq.(Hz) Source Level	
(dB re 1 µPa/m)		(dB re 1μPa/m)	
100	166.74	320	162.11
130	169,45	405	157.49
165	168.54	505	153.06
205	159.54	635	156.23
255	157.76	805	144.06

Table 1. Source levels of each frequency.

2,2 자료 분석

Fig.3과 같이 DIFAR 시스템을 통해 수신된 음향신호는 육상의 수신기 (AN/ARR~75)를 통해 녹음기(TEAC-5000)에 녹음된 다음, 스펙트럼 분석기 (HP-3562A)로부터 Hydrophone 음압준위(Sound Pressure Level) SPL이 구 해진다.

Fig.3. Block diagram of the measured acoustic signal flow.

한편, 음원과 Hydrophone 사이의 전달손실(Propagation Loss) PL은 다음과 같이 정의 할 수 있다.

$$PL = 10Log(Is/Ir) = SL - SPL (dB)$$
(1)

여기에서 Is = 기준거리에서의 음원의 음향강도,

Ir = Hydrophone에서의 음향강도,

SL = 음원준위,

SPL = Hydrophone에서의 음압준위이다.

식 (1)에서 PL을 계산하기 위해서는 음원준위 SL과 Hydrophone에서 의 음압준위 SPL을 알아야 하는데, SL은 Table 1에서와 같이 주파수별 로 시간에 따라 일정하므로 결국 DIFAR 센서로부터의 음향신호를 분석 하여 SPL 값을 알면 PL을 계산할 수 있다.

스펙트럼 분석기에서 측정된 전압준위로부터 SPL을 구하면,

 SPL = 20Log(Vs) - H (dB)
 (2)

 여기에서 Vs = 스펙트럼 측정치 (Volts).

H = 측정 시스템의 감도응답(Sensitivity Response)이다.측정 시스템의 주파수별 감도는 Fig.4에 나타난 곡선을 이용하여 구하였는데, 기준점은 -137 dB re 1 V/μPa (at 100 Hz)이다.

Fig.4. Receiving sensitivity response vs frequency.

Ⅲ 결과및 토의

Fig.5는 DIFAR 센서 ① 정점에서 수신된 음향신호를 분석하여 구한 시간별 전달손실중 505 Hz인 경우를 나타내고 있다. 매 1분 간격으로 GPS를 통해 음원의 위치를 파악하였으며 이 자료를 바탕으로 음원과 수

Fig.5. Relative propagation loss vs time for the frequency of 505 Hz at site ①.

신기 사이의 거리를 계산하였다. 그림에서 전달손실은 편의상 상대적인 양으로 나타내었다.

그림에서 볼 수 있듯이 1991.9.2,11:55 까지는 계속해서 음원이 수 신기로부터 멀어져 가는 경우이고 16:17 부터는 계속해서 가까와지는 경 우이다. 음원의 예인속도가 거의 일정하고 또한 예인 경로가 거의 직선 에 가까운 10:30 - 11:55의 경우를 살펴보면 시간에 따라 거의 Log 함수 에 가깝게 전달손실이 증가하고 있음을 볼 수 있다. 15:17 - 16:46 구간 은 음원이 수신기에 가까와지는 경우인데, 이 경우도 역시 Log 함수에 가까움을 알 수 있다.

Fig.6은 각각 ①, ③ 정점의 DIFAR 센서로부터 얻은 음향신호를 분 석하여 거리에 따른 전달손실을 구한 뒤, 주파수별로 Curve Fitting한 Log 함수들을 나타내고 있다. 각각의 곡선들은 거리별 전달손실 자료로 부터 전달손실 PL = A Log R + B (R in m) 의 형태로 구한 것이다. 그림 에서 전달손실은 편의상 상대적인 양으로 표시하였다. Fig.6 (a)는 DIFAR 센서 ① 정점의 결과로서 음원기가 수신기로 접근하는 경우인 15:

Fig.6. Relative propagation loss curves vs range(Km) obtained from the DIFAR data of site (1) (a) and (3) (b).

17 - 16:46 시간대의 분석 결과이다. 가장 작은 전달손실로 전달될 수 있는 최적 주파수는 805 Hz 임을 알 수 있다. Fig.6 (b)는 DIFAR 센서 ③
정점의 결과로서 음원기가 수신기로 접근하는 경우인 10:30-13:22 시간대의 분석결과이다. 거리 4~5 Km 까지는 805 Hz의 음파가 가장 전달손실이 크나 8 Km 이상에서는 가장 작아짐을 볼 수 있다.

이상의 결과에서 10 Km 이상의 거리에서 최적 주파수는 805 Hz 인데, 이 결과는 Jensen 과 Kuperman [1] 의 결과와도 어느 정도 일치한다. 즉, Fig.7은 수심과 계절에 따라 관측된 최적 주파수의 변화를 보여주고 있는

Fig.7. Optimum frequency as a function of water depth. Bars indicate observed variation with bottom type [after Jenson and Kuperman,1].

데, 수심이 50-80 m, 옴속구조가 여름철의 것일 경우에 최적주파수가 800 Hz 내외에 존재함을 확인할 수 있다.

최근에는 천해의 저주파 대역에서 최적 주파수를 결정하는 해저 감쇄 손실 계수가 주파수에 선형으로 비례하기보다는 비선형적으로 비례함이 밝혀지고 있으므로[6,7,8], 앞으로 동해 남부해역 퇴적물 특성(퇴적물 유 형, 입자 크기, 밀도, 음속등)과 관련하여 보다 심충적인 연구를 기울일 때 최적 주파수에 대한 완전한 규명이 이뤄지리라 여겨진다.

REFERENCES

- F. B. Jensen and W. A Kuperman, "Optimum frequency of propagation in shallow water environments, "J. Acoust. Soc. Am.73, 813-819, 1983.
- 2. A. I. Eller and D. A. Gershfeld, "Low-frequency acoustic response of shallow water ducts, "J. Acoust. Soc. Am. 78, 622-631, 1985.
- D. A. Gershfeld and A. I. Eller, "Geometric consideration in determining the optimum frequency of acoustic propagation in shallow water wave guide," J. Acoust. Soc. Am. 78, 632-641, 1985.
- 4. P. W. Smith, "Low-frequency rolloff in the reponse of shallow water channels," J. Acoust. Soc. Am 79, 71-75, 1986.
- T. Alkal, "Sea floor effects on shallow-water acoustic propagation," in bottom-interfacing ocean acoustic, edited by W. A. Kuperman and F. B. Jensen, Plemum, New York, 1980.
- J. Zhou and X. Zhang, "Effect of frequency dependence of sea-bottom attenuation on the optimum frequency for acoustic propagation in shallow water," J. Acoust. Soc. Am. 82(1), 287-292, 1987.
- R. D. Stoll and R. E. Houtz, "Attenuation measurement with sonobuoys," J. Acoust. Soc. Am. 73, 163-172, 1983.
- R. D. Stoll, "Marine seiment acoustics," J. Acoust. Soc. Am. 77, 1789-1799, 1985.