실내의 바닥진동에 의한 음향방사해석

최 석 주 삼성종합건설(주)기술연구소

Analysis of sound radiation by floor vibration in the closed sound field

Seokjoo Choi Institute of Technology, Samsung Eng. & Const. Co.

요약

실내 바닥슐래브의 휨진등여 의한 음향방사문제에 대하 여 유한요소법을 적용하여 검토하였다. 단순한 형상의 판이 팀진등하여 자유공간에 음을 방사하는 문제에 대해 서는 이론적인 해를 구할 수 있으나, 임의형상의 판이 힘진동하여 실내에 움을 방사하는 문제에 대해서는 검토 되지 않았다. 따라서 본연구에서는 이와감은 문제를 단 순화한 해석법으로서 먼저 유한요소법을 이용하여 판의 팀진동에 대한 고유모드의 상대변위를 구하고, 다음 상 대변위를 진동속도로 변환한 결과를 입력조건으로 하여 유한요소법에 의한 3차원 음장해석을 하였다. 그 결과 실내 바닥슬래트의 됩진동에 의한 음향방사파워는 술래 브의 진동모드, 실내음향모드 및 벽홉음을 등의 조건에 따라 크게 변화된다는 것을 확인하였다.

1. 서론

건물내 소음문재의 하나토서 교통기관과 각종 기계류 에서 발생된 진동이 건물에 컨달되어, 실내에서 음으로 방사되는 문제가 있다. 이 문제를 효율적으로 방지 혹은 저감시키기 위해서는 판진동과 실내방사음과의 관계를 정확하게 파악할 필요가 있다.

종래, 부한판 혹은 형상이 단순한 평판진동에 의한 자 유공간으로의 음향방사에 대해서는 Westphal¹⁾. Maidanik²⁾, Wallace³⁾ 등의 연구에 의하여 그 예측이 가능하게 되었다. 또한 Bhattacharya⁴⁾ 는 직방세이며 진동면(판넬)을 제외한 컨넥면이 음향적으로 완전반사하 는 조건의 음향방사에 대하여 판넬의 고유진동모드와 실 내음향모드와의 연성(coupling)관계로서 이론해를 구하 고 있다. 그러나, 이들 방법은 실내의 형상이나 경계벽 의 훌륭조건 등이 복잡한 경우에는 적용하기 어렵다. 따라서 본 연구에서는 실내의 바닥판진동에 따르는 음 항방사의 메카니즘(이하 음향빙사효율)을 규명하기 위한 하나의 방법으로서 유한요소법을 적용하여 기초적인 검 토를 하였다. 즉, 바닥판이 저차모드로 원진동하는 경 우. 실내음향모드와 벽홀음움에 따른 음향방사효율의 변 화에 대하여 경도하였다.

2. 음향방사효율의 정의

무한대의 평판이 평균속도 '4로 피스톤 진동하는 경 우, K.Gosele⁵⁾ 가 도입한 식(1)의 음향방사효율 #는 죔진동하는 판으로부터의 음향방사파워를 다루는데 매우 유용하다.

$$x = \frac{\Psi}{\rho_{\rm cS} \langle V_{\rm e} \rangle^2} \tag{1}$$

```
단, pc : 공기중의 특성임피먼스(kg/m<sup>2</sup>·sec)
S : 진동면의 면적(m<sup>2</sup>)
<V•><sup>2</sup> : 진동면의 2승평균속도(m<sup>2</sup>/sec<sup>2</sup>)
표 : 음향방사파워
```

그러나, 감쇠가 매우 빠른 구조채를 점 가진할 경우나 판의 진록 위상관재가 복잡한 경우에는 평균속도 Vo를 정의할 수 없기 때문에 그에 대응되는 음향방사효율을 구할 수 없다. 따라서 여기서는 식(1)의 수정안으로서 진동면을 잘게 분할하여 분할면 하나에 대응되는 진동과 음향방사파워와의 관계를 고려할 수 있는 식을 다음과 같이 정의하여 본는문에 적용하였다.

$$\kappa = \frac{V}{\rho c \Sigma S_{1} \langle v_{+1} \rangle^{2}}$$
(1)

단, Si : i번째 진동면의 면적(m²) 〈Vei>2: i번째 진동면의 2승평균속도(m²/sec²) i = 1.2....n (n은 분합면의 수)

3. 수치해석에

3.1 바닥슬래보의 고유진동보드

그림-) 에 나타낸 철근콘크리트모델의 바닥슬래브를 대상으로 고유주파수·고유진동모드에 대한 수치계산을 하였다. 계산방법으로서는 그림-2 에 나타낸 바와 같이 9절점 사각형요소를 이용하여 요소분할은 48요소, 221 절점으로 하였으며, 슬래브의 주면지지조건은 단순 및 고정지지 두조건을 설정하였다. 이 경우 총자유도수는 단순지지 551. 주변고정인 경우 495가 된다.

또한 수치계산치를 실험치와 비교하기 위하여 그립-3 에 나타낸 간단한 장치를 이용하여 수용접과 가진정간의 컨달함수를 측정하였다. 어때 컨달함수의 진목이 peak가 되는 주파수를 고유주파수라 하였으며, 수치계산과 측정 에 사용된 구조물의 물성치는 다음과 같다.

> 판두께 : h = 0.03 (m) 영울 : E = 2.02 × 10¹⁰ (N/m²) 포아준비 : μ = 0.19

표-1 에 슬래보주변이 단순지지인 경우의 수치계산결 과외 식(2)에 의한 계산치, 표-2 에는 슬래브주면이 고 정지지인 경우의 수치계산결과와 근사식(3)6) 및 실험결 과를 비교하여 나타낸다. 두조견 보두 유한요소법에 의 하여 구한 고유주과수와 실험치 혹은 엄밀해와 잘 일치 하는 것을 알 수 있다.

$$f_{ma} = \frac{k}{2\pi ab} (D/M)^{1/2}$$
(2)

$$f_{mn} = \frac{k}{2\pi ab} (D/M)^{1/2} \left[\left(\frac{\alpha}{a} \right)^4 + \left(\frac{\beta}{b} \right)^4 + 2 \left[\frac{\alpha\beta}{ab} \right]^2 P_m P_n \right]^{1/2}$$
(3)

단. a, b : x, y 방향의 변길이(m) M : 변렬도 $\rho_{Ph}(kg/m^2)$ D = $\frac{Eh^3}{12(1-\nu^2)}$ k = $\frac{(m\pi)^2}{(a/b)} + \frac{(n\pi)^2}{(b/a)}$ a = m + 0.5 β = n + 0.5 Pm = 1 - (2/\pi a) Pa = n - (2/\pi \beta) n, n = 1, 2, ...

3.2 2차원 음장내의 음향인텐시티계산

2차원 작량체보델을 대상으로 유한요소법에 의한 복소 음향인벤시티의 수치계산을 하였다. 이 보델은 주위벽체 에 약간의 흥음을을 가정하면 근사적으로 해를 구할 수 있는 보델로서 수치계산결과의 타당성 검증을 위하여 해 석모델로 채택하였다. 계산방법으로서는 9절점 사각형요 소를 사용하여 요소분할은 등간격으로 875절점, 204요소 로 하였다. 또한 경계조건은 근사이콘치와 비교하기 위 하여 주위벽이 약간 훌용하는 조건. 즉 음압반사율 0.98

그림-1 해석모델의 개요

그림-2 바닥슐래브의 요소분할

표-] 콘크리트판의 고유주파수 비교(단순지지)

Mode	by FEM (H2)	by Theory(Hz)
(LD	43.1	42.4
(2.1)	89.6	89.1
(1.2)	126.4	127.3
(3,1)	167.6	167.6
(2.2)	171.9	173.9
(3,2)	248.6	252.4
(1,3)	266.5	265.1
(4.1)	277.9	277.9
(2,3)	310.9	313.9
(4.2)	357.6	362.7
	1	1

표-2 콘크리트완의 고유주파수 비교(주변고정)

80.8	81.6	80.5
135.3	137.4	135.0
190.0	192.3	
225.4	228.7	
239.6	243.1	232.5
323.9	329.2	
350.4	353.3	352.5
358.9	360.0	-
405.8	409.3	407.5
443.8	450.1	· ·
	135.3 190.0 225.4 239.6 323.9 350.4 358.9 405.8 443.8	135.3 137.4 190.0 192.3 225.4 228.7 239.6 243.1 323.9 329.2 350.4 353.3 358.9 360.0 405.8 409.3 443.8 450.1

그림-3 고유모드 측정장치의 개요

에 상당하는 음향임피던스(실수)를 설정하였다. 음원은 그림에 나타낸 점음원이 630Hz로 진동하는 조건으로 하 었다.

복소음향인텐시티의 수치계산결과를 근사이몬치기와 비교하여 그림-4 에 나타낸다. 계산결과와 근사이몬치가 잘 일치하는 것을 알 수 있다. 따라서 후술하는 바닥숨 테브의 진동에 의한 음향방사파워의 산출시에는 음향인 텐시티법을 이용하였다.

3.3 바닥슬래브의 진동에 의한 음향방사

해석모델은 그림~1 의 바닥슬레브가 각각의 고유모드 ~ (1.1), (2.2), (2.3), (4.2) 로 진동하여 3차원 실내에 음향방사하는 조건을 설정하였다.

계산방법으로서는 8절점 6면체요소를 사용하였으며,요 소분할은 전모델에 대하여 990요소, 1344절점으로 하였 다. 이 경우, 바닥슬레브의 진동속도분포는 전술한 고유 진동모드의 상대변위로 부터 구하였다. 또한 바닥슬래브 톱 제외한 천장과 벽의 경계조건은 후술하는 흡음율에 상당하는 음향임피던스를 적용시켰다.

바닥슬레브에서 방사되는 음향출력의 평가시에는 식 (1)의 무차원화한 음향방사효율을 적용하였다. 실내에 방사되는 음향방사파워의 개산은 50Hz에서 500Hz까지를 대상으로 하였으며, 진동면에서 방사되는 음향안텐시티 의 수직방향성분을 적분하여 구하였다.

3.4 개산결과 및 그 검토

그림-5 는 벽·천장와 흡음을을 0.8 일정하게 한 경우, 바닥슬래브의 고유모드별 음향방사효율을 비교한 것이 다. 슬래브의 진동모드에 따라 방사효율의 peak 위치가 변화되는 것을 알 수 있다.

그림-6 는 바닥스래브가 (1.1)모드토 진동하는 상태에 서 천장의 흡음율을 0.1에서 0.51까지 4단계로 변희시켰

그림-4 수치계산결과와 근사이론치의 비교

을 경우의 음향방사효율을 비교한 것이다. peak의 위치 는 변하지 않으나 흡음을이 많아질 수록 peak와 deep의 차가 적어져 부드러운 규선이 되는 것을 알 수 있다. 그림-7 은 바닥슬레브의 모드(2,2)와 벽 천장의 흡음 율음 고정하고 실내의 충고를 4단계로 변화시켰을 경우 의 음향방사효율을 비교한 것이다. 이 결과를 보면, 200Hz부근의 peak의 위치는 변하지 않으나 다른 peak의 위치는 변화되고 있다. 이것은 실내음향모드가 음향방사 효율에 크게 영향을 미친다는 것을 의미한다.

4. 결론

바닥습래브가 저차의 고유모드로 진동하여 실내에 움 을 방사시키는 경우, 방사파워는 바닥슬래브의 진동모 드, 실내의 음향모드 및 벽면 흡음을 동의 조건에 따라 크게 변화한다는 것을 확인하였다. 즉, 바닥술래브의 전 동에 의한 실내음향방사를 계산하는 경우에는 이들 파라 메타를 동시에 고려할 필요가 있다.

[참고문헌]

- W. Westphal, "Zur Schallabstrahlung einer zu Biegeschwingnungen angeregten Wand," Acustica, Vol.4, pp.603-610(1954).
- G. Maidanik, "Response of ribbed panels to reverberant acoustic fields," J. Acoust. Soc. Am., Vol. 34(6), PP, 809-826(1962).
- 3) C.E. Wailace, "Radiation resistance of a rectangular panel," J. Acoust. Soc. Am., Vol. 51(3), PP. 946-952(1972).
- 4) M.C. Bhattacharya and M.J.Crocker, "Forced vibration of a panel and radiation of sound into a room," Acustica, Vol. 22, pp. 275-294 (1969).
- Gosele, "Schallabstrahlung von platten die zu biegeschwingungen angeregt sind," Acustica, Vol. 3, pp.243-248(1953).
- 6) E.Szechenyi, "Approximate methods for the determination of the natural frequencies of stiffened and curved plates," J.Sound and Vib., Vol.14(3), pp.401-418(1971).
- 7) 安久司郎、日高新人、矢野博夫、橘秀樹、"復素音響 インテンシティによる音場解析。"日本音響學會誌, Yo1,43(12)、pp.994~1000(1987).

그림-5 바닥슬래브의 모드별 음향방사효율의 비교

그림-6 천장 훌울율을 변화시킨 경우, 음향방사효율의 변화 (바닥슬래브 모드 (1,1))

그림·7 천장 높이를 변화시킨 경우, 음향방사효율의 변화 (바닥슬래브 모드 (2,2))