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Abstract

This paper describes the design of an adaptive closed circuit anes-
thesia controller based on a multiplexed mass spectrometer system.
The controller deals with measurement deterioration caused by mea-
surement delay and rise time through a long catheter as well as long
sampling times due to the multiplexed measurements. Measurement
data is extrapolated between sampling periods to increase the csti-
mation convergence rate. A multiple-step-ahead predictive control
algorithm is nsed to calenlate intermedinte control inputs between
sampling intervals. Simulations are used to vnlidate the designed
controller.

1 Introduction

With the advent of reliable operating room mass spectrometers the
monitoring required for an anesthetic is available, and closed circuit
anesthesia can be administered in a safe, reliable manner. The coup-
ing of low cost compulers and increasing sophisticated monitoring
has brought closed circuit anesthetic regimes into operating room.

A recent pnblication by Vishnoi and Roy [1] address the coup-
ing of computer and mass spectrometer (o provide adaptive control
of closed cirenit anesthesia(COA). By considering fow and mass bal-
ances around the closed cirenit, bilinear state equations are obtained
for alveolar oxygen, circit volume, aud alveolar halothane concen-
tration. A recursive least square algorithm is used to estimate oxygen
consumption, nitrous oxide uptake, and halothane uptake from the
four measured quantities; alveolar oxygen, halothane, nitrous oxide
concentration, and circuit volume. Since the state equations for the
CCA system are nonlinear, a predictive control system is nsed.

This paper examines the problems raised when the control sys-
tem of [1] is used with a multiplexed mass spectrometer. Since a
single mass spectrometer in each operating room is too costly, the
usual arrangement is to have a central mass spectrometer service
a number of operating rooms, typically ten. In this situation the
gas profiled from the patients at ten current sites are stored in long
sampling catheters and directed to the centrally located mass spec-
trometer [2]. ‘The mass spectrometer switches between the catheters,
providing end tidal and inspired gas concentrations which are dis-
played at each site. Since the sampling catheters are long (typically
30m) the gas concentration measurements are degraded [3]. It has
been shown [1] that the gas delivery characteristics of the catheter
can be modeled as a first order systern with a transport delay. The
process of multiplexing increases the sampling interval of an individ-
ual site. A mass spectrometer dedicated to a single site will have a
sampling interval of six seconds. If the mass spectrometer scrvices
ten locations then each location witl be sampled every 60 seconds. If
one of these locations is using the adaptive closed circuit anesthesia
delivery system of {1], then a modification of the control law must be
made to accomt for the increased sampling interval, rise time, and
transportation delay.

2 Model and Controller

2.1 Model

The model of the closed circuit can be derived by setting up the gas
mass flow rate equations across component of the circuit {1). The
resultant model is a SISO systems for the halothane concentration
and a MIMO gystem for oxygen and circuit. volune with oxygen and
nitrous oxide as iuputa. The elfect of halothane on the MIMO system
is assumed to be negligible.

By considering the total inflows to and outflows from the cir-
cuit, the state equation for the circuit volume is obtained as,

Vs = Uo, + Unyo — Voo, — Vo — Y (1)

Considering the mass balance for oxygen at the ventilator and com-
pleting the circuit we obtain a bifinear state equation for the alveolar
oxygen concentration as follows:

Fao, = [Faa (Voo + W0) — Fao,(Uay + Um0} + Uo, — Via )/ Vi (2)

Thus we obtain a MIMO nonlinear(bilinear) state space mode! for
the alvecolar oxygen concentration and circuit volume.

Following the same procedure, we can obtain a similar cqnation
for alvealar halothane concentration.

Fan = [Fan (Yo, + V0) = Fan(Uo, + Unyo+ Uk )+ Un = Vil / Ve (3)

In the derivation it is assumed that the inspired and alveolar con-
centrations of oxygen and halothane are equal. This assumption,
though not valid for open-circuit, generally holds in the closed-circuit
in steady state,

2.2 Estimator

The estimated parameters are oxygen consumption, nitrous ox-
tde and balothane uptakes. The controlled variables are alveolar
oxygen(Fag,), alveolar halothane concentration(Fay) and cirenit
volume( %), This allows the estimator to be deconpled into the
following three equations.

Vo = U — VeFag, ~ VeFao, — VeFio, — WEao, ()]
Voo = Uwo— WFamo — VeFano — ViFano — VeFino (5)
W = Uy~ ViFag — VaFan ~ Vi.Fan — VsFip (8)

The estimation of these parameters is performed by using
recutsive least square estimation. It is assumed that the circuit.
feak( V) and the lung fanctional residual capacity( Vi) are known.
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2.3 Controller-Predictive Control

To control the bilinear system a predictive control algorithm {5] is
used. It has a advantage of being able to utilized the true nonlincar
model of the process. Thus it may be better able to capture the
intrinsic features of the control problem than a coutrol law bascd on
a linear approximation. Predictive control is based on an assumed
nodel of the process and on an assumed scenario for the future
control inpnts. This gives a sequence of control inputs. Only the
first one is applied to the process, and a new sequence of control
signals is calculated at next sampling time. This strategy is called a
receding horizon control [6]. One common assumption on the future
inputs is that the control input will rerain constant. ‘This constant
fiture control input assumption is used here. The k-step-abead
predictive controller is designed to minimized the quadratic cost
function consisting of the control effort. and predicted output, error
variance from the desired output. The incorporation of the cstimator
with this controller resnlts in an indircct adaptive predictive control
scheme [1].

3 Extension to Multiplexed System

3.1 Design Consideration

The manner in which the gases are drawn has a direct bearing on
the design of the control system. A 20 seconds profile of airway gas
concentration is stored in each sampling catheter. This profile is
sent down a long(30 meter), thin(1.07 mm int. dia.) catheter to the
central mass spectrometer. The gas flow rate is low due to a small
inlet(760 torr) pressure gradient. This results in 8 transient time of
approximately 21 seconds. When a particular catheter is switched
to the mass spectrometer for gas analysis the outlet pressure drops
to 80 torr, and the gas profile to be analyzed in approximately 6
seconds. The analysis provides for a single breath to be validated.
If the same catheter remains connected (single room analysis) the
transport, delay is reduced to 6.5 seconds. Consequently the range
of transport delay is from 6.5 seconds to 21 scconds. 'This sampling,
compression, and expansion of the airways provides a single analysis
for cach of 10 operating rooms every 60 seconds even though the
data form each operating room may have undergone a 20 second
transport delay. Furthermore since the sampling catheters have a the
gas delivery characteristic which can be modeled by the previously
discussed transport delay. Therefore the current measurement vector
from the mass spectrometer Z(n) is assumed equal to the true value
¥(n) of the gas concentration N4 samples in the past.

Z(n) = Y(n— Ny ™

The problems caused by the increased smnpling tine and trans-
port lag lie in the controller design and the estimator equations. The
original state equations of the closed circuit systems are in contin-
nous time. The conversion to a sampled data system involves cal-
culating the derivatives as backward differences. As the sampling
interval increases these approximations to the derivatives becomes
less accurate. One of the assumptions used in the derivation of the
state equations is that alveolar and inspired concentrations arc e-
qual. ‘This is certainly not trme during transient. disturbances, and
s the sampling interval increase becomes less true during transients,
causing large errors.

The state equations are bilinear, requiring a &-step-ahead pre-
dictive control. The bilinearity becomes more pronounced as the
sampling interval lengthens, increasing the difficulty of providing s-
mooth control.

Although all of the preceding problems with inerease sampling
interval canse a degradation of system performance the principle
problem is with the recursive least square estimator. The estimates
of oxygen uptake, nitrous oxide uptake, and halothave uptake are
necessary to provide the proper fresh gas flow to maintain the cir-
cuit volume and the proper concentrations. The mimber of samples
required for convergence is the same regardless of the sampling inter-
val. If the sampling interval is increased by a factor of ten, then the
estimator takes ten times longer for the parameter vahies to conver-
gence. This is clearly too long for adequate control, and simniations
have shown that instabilitics can arise with erroncous estimation,
Faster convergence is achieved by using extrapolated data between
samples. The cxtrapolation used is based on the assumption that up-
take is proportional to the inverse of the square root of time. With
this type of extrapolation the cstimator is reinitislized at each true
data point, This method produces a smooth and rapid convergence,

3.2 Modification of Control Algorithm

The previous changes are incorporated in the design ol multiplexed
adaptive controller. Predictor, estimator, and controller are modified
to compensate the delay in the measurements.

After compensation the equation for halothane concentration
can be given by

Fanr(n 4 1n) £ Ag(nln) Eay(n) + By (n|n) Uy (n— Ng) + Iog (nln)
®

where
Au(nln) £ U+ (Vo o) + ool )
Uy () = Unyo) (10)
B & -1 = Fan(nln) ()
Butaln) & = 4 Vol (2)

Note that the above equation is a time-varying bilinear equation
(i.e., Ag(nn), By(n|n) and Fy(n|n) is time- varying).

Now we consider prediction of Halothane concentration. Note
that Ap(n + Un), Ap(n + 2f0),..., Ex(n + 1|n), Eg(n + 2|n), ...
are unknown fture variables at time n. We will consider them as
constant during the derivation of the prediction equation. ‘Then N4
step-ahead prediction of Halothane concentration at time n, Fag(n+
Ng4|n) which corresponds to Fyy(n{n) can be obtained by

Farr(n+ Nyjn) = AR(n{n)Fap(n)

Ng-1
+ Z AN ) Gy (n 4 dn) Un(n+ i — V)
L\

Ne
+ 3 A (ol B () )
i=0

Note that this a known quantity at time n. The k 4 Nystep-ahead
prediction of halothane concentration is calculated based on current,
available variables. Fay(n -+ Nyjn) which corresponds to Fay(n[n)
can be given by

Fap(n+ Ny+ k|n) = Fa(n)Fay (n+ Nyln) + Gu(n) Uy (n) + Ey(n)
(1)

where

Fy(n) éAf,(nln) (15)
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Gu(n)y 2 (Z AL (n|n)) By (n+ Ngln) (16)
=0
=
Ea(n) 2 (3 Afy(n|n)) Ex(nln) a7
=0

Using the same reasoning the coupled Gy and Ve prediction
can be given by

F, + Ng + k}n .\ F v+ Ny|n,
[ A(h¥({:2n+ld:ln) fn) ] =F(n)[ Ao,(:{q(”) dln) ]

+G(n)[ L’,i"'(f(’g) ]+E(n) (18)

where
F(n) 2 [ Af:.gnln) 0 ] )
G(n) 2 [ Zi:ol é),(?lh?cl’jlal(n_\l_ Njn)

k-1 4
1) (ol (n il | )

w2 [ i3 Ab (nln)Eoy(nlm)
”("""[ ot | @

Equation (14) and (18) can be expressed as
Z(n+ k + Ng|n) = F(n)Z(n) + G(n) U(n) + E(n) (22)
A k-step cost function can be written as

I=[Z(n+k+Nyn) ~ V' (n+ k)"
QfZ(n+ k+ Nyn) ~ V' (n+ k)]
HU(n) ~ Uln - 1]7Q[U(n) — Uln ~ 1)} (23)

By seiting 81/8U(n) = 0 the control law is obtained as

U(n) = ~ [GT(m)Q,C(n) + Q. "
. [GT(n)Qy(F(n)Z(n) +E(n) - Y(n+ k) - QU(n-1)] (24)

Note that control law is function of known measurement Z(n), Z(n—
1},... and the past inputs U(n ~ 1), U{n~1),....

Due to the multiplexed operation of mass spectrometer, the
measurement Z(n) is not available at every step n (in case of 10-
room operation, once per 10 step). Define N as sampling time T
between each data point. To resolve this problem we calculate the
control input U{n) at the moment of sampling only, and use this
valne untji the next sampling time n+N.

Un+ i) =Un),i=1,....N -1 (25)

4 Simulations and Discussions

The adaptive control algorithms described in the previous sections
are tested on & seven compartment model for a 25 kilogram patient.
This allows the simulation results to be compared with experiment
results from a 25 kilogram dog. Simulation program is written in
ASYST. We set BPM equal to 10 and h equal to 6 second. Sampling
time T ranging from 6 to 60 second and time delay 7Ty ranging from
0 to 24 second are considered in simulations.

Simulation results show that one-step prediction horizon k == 1
resnlts in a faster response but larger overshoot and oscillation in
all cases. This is mainly due to the nonlinearity of the system. So
multi-step prediction horizons (k = 2,3,4) are used and result in
better output responses but they get slower as k increascs.

Control performance (reference tracking performance) is de-
graded due to the delay in sampling and long sampling time. To
see how the time delay T; affect output response and how the direct.
delay compensation works, we first set sampling time 7'= 6. Note
that three control methods are all equivalent in this case. When
k = 2, output responses show larger oscillation as Ty increases. But
by estimating Ty properly we can compensate the delay effect. S-
ince controlter ses output prediction to compensate time delay |
large value of T results in longer step output prediction so output
prediction gets inaccurate as Ty increases.

5 Conclusions

The feasibility of extending the single patient adaptive CCA con-
troller to a multipatient mass spectrometer set-up has been demon-
strated. Worst-case simulations show that the modified controllers
perform satisfactorily when the sampling period is increases tenfold.
Animal experiment. is currently being performed to validate the de-
signed controller.

Farther development of the multiplexed controller involves
modeling and simulation of the multiplexed spectrometer system in-
corporating catheter delays and sample compression. The circuit
volume measurement needs to be improved. The on-line measure-
ment of functional residual capacity during nitrogen washout is re-
quired. A further application of the adaptive controller wonld be to
use the continnous estimate of oxygen uptake as a basis for contin-
tions monitoring of cardiac output.
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