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Abstract

Recently, the development of novel control methodology enables
us to improve the performance of AC-machine drives by using
pulse width modulation (PWM) technique. Usually, the dynamic
characteristic of induction motor (IM) has been represented by the
5-th order nonlinear differential equation. This dynamics, however,
can be reduced to 3-rd order dynamics by applying direct control of
IM input current. This methodology concludes that it is much easier
to control IM by means of the field-oriented methods employing the
current controller. Therefore a precise current control is crucial to
achieve a high control performance both in dynamic and steady
state operations.

This paper presents an adaptive fuzzy current controller with
artificial neural network (ANN) for field-oriented controlled IM.
This new control structure is able to adaptively minimize a current
ripple while maintaining constant switching frequency. Especially
the proposed controller employs neuro~computing philosophy as well
as adaptive learning pattern recognizing principles with respect to
variations of the system parameters., The proposed approach is
applied to the IM drive system, and its performance is tested
through various simulations. Simulation results show that the
proposed system, compared among several known classical methods,
has a superb performance.

1. INTRODUCTION

The field-oriented control approach to the application of IM
drive system has achieved high control performance, which could be
available through only DC motor drive system. The dynamic
characteristic of IM  has been represented by the 5-th order
nonlinear differential equation. This dynamics, however, can be
reduced to 3-rd order dynamics by applying direct control of IM
input current.[1] Therefore, a precise current control is crucial for
the high control performance.

Recently, fuzzy theory and artificial neural network technology
has been applied to the motor current control system.[2] For
instance, application of ANN to IM current control system is
proposed by Song, J. W, et al[3] where neural network generates
optimal switching pattern and control PWM signals directly while
being continuously trained to update a certain knowledge
represented by the specific characteristic features of IM drive
system. This system, however, should employs the off-line
learning method with respect to the specific pattern of IM drive
system at initial control stage. This is because ANN could not
sufficiently learn the characteristics of IM at initial stage, by which
the control system can neither control nor learn simultaneously.

. This prompts us to develop fuzzy current controller{4] which is able
to achieve control objective from initial stage. Fuzzy current
controller has the following advantages: 1) it does not require
modeling and analysis of IM, 2) it is applicable to the nonlinear
system, and 3) it can exploit expert’s knowledge. Even though it
has several advantages over conventional controllers, there still
remains unresolved problem of the general methodology for
choosing optimal scaling factor and designing proper membership
function.

As a conventional control approach, the hysteresis current
controlled voltage source inverter (CC-VSI) was proposed by
Plunkett [5). This approach has been rapidly spread out in AC
motor drive systems because it can reduce the order of system
dynamics as mentioned above. From CC-VSI, many control schemes

have also been developed [6]. The control goal of CC-VSI is first
to achieve the high control performance, secondly to reduce losses
due to the harmonic from load side by minimizing the current
ripple, thirdly to reduce the switching losses of power component
device. Hysteresis current controllers use some type of hysteresis in
the comparison of the line currents to the current references. A
current controller with hysteresis band [7] has a simple control
structure and has the capability to limit peak current in which,
however, the switching frequency to enforce current within the
hysteresis band can not be maintained constant; it is varied in
accordance with load and speed variation. This incurs excessive
harmonics. In order to achieve a constant switching frequency, the

ramp comparison controller [8] has been proposed. The ramp
comparison controller compares the current errors to a triangle
waveform to generate the inverter firing signals. This method,
however, generates a possible phase delay which deteriorates the
system performance. In addition, if the motor time constant is
smaller than slope of the ramp wave, multiple modulation would be
generated in the one period of reference ramp signal. Predictive
controllers calculate the inverter voltages required to force the
currents to follow the current reference. Two types of predictive
current controllers on the basis of space vector have been
developed: one put emphasis on the constant switching frequency
[9], and the other on the minimum switching frequency [10]. Both
types of predicive current controllers require an excessive
computation time to obtain the next switching state.

This paper extends the previous fuzzy current controller{4] to a
novel adaptive fuzzy current controller by combining ANN
technology principle.[11] The proposed approach in this paper is able
to not only improve the control performance but also resolve the
problems remained in the current controller for field oriented M
drive system. Moreover, the proposed current controller is able to
reduce the current ripple adaptively while maintaining a constant
switching frequency even under the parameter variation and abrupt
load changes.

2. PROPOSED CURRENT CONTROLLER

In general, the requirements for the high performance current
control system are : 1) fast tracking performance, 2) minimum
current ripple, 3) robustness to parameter variation, and 4) zero
steady-state error in both reference tracking and load regulation.
This paper employs fuzzy control approach in order to achieve a
robust control structure to the parameter variation. This is because
the fuzzy current controller does not require the exact dynamics of
IM to be controlled. Hence, the performance of the fuzzy controller
might be more insensitive to the parameter variation than
conventional controllers based on exact mathematical model.[12]
There is, however, no concrete design methodology for fuzzy rule
based control algorithm. In many cases, there is difficulty in tuning
parameters used in fuzzy controller (ie., scale factor, shape of
membership function, etc.). Moreover, when the variation of motor
parameters occurs, the current error is no longer minimized.
Therefore it is required for additional adaptation mechanism.

The proposed current controller consists of an adaptive fuzzy
current controller using ANN estimation unit of which structure
diagram is shown in Fig. 1. The fuzzy current controller has two
input components : errors modified by ANN estimation outputs, and
the change of errors of three phase at each sampling time. In order
to minimize output current ripple, the fuzzy controller generates
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PWM pattern signals which will be fed to inverter drive. The ANN
estimation unit leamns the characteristic of IM based on current
error and train of past error, and it predicts next error which
modify input of the fuzzy current controller. The proposed controller
determines the PWM signals which can adaptively minimize the
output current ripple, under unexpected variation of IM parameters
and/or controller parameters. The proposed current control
architecture improves performance of the previous fuzzy controller.

k-th width. This case is illustrated in Fig. 3. By applying the same
procedure to each case, control output is determined appropriately.
The linguistic control rules obtained by above procedure are listed
in Table 1.
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Figure 1. Block diagram of proposed current controller

3. THE FUZZY CURRENT CONTROLLER

This section details the development of the fuzzy current
controller for field oriented IM drive system. For convenience of
incorporating the intuition and experience of human expert into
fuzzy control algorithms, the behavior of the dynamic current
response is first investigated. The current error between the
reference and actual values of current controller corresponding to
one phase e(k), and its error change de(k) of IM drive system are

defined as follows:
iret(k) = faer(k) (03]

ek) =

de(k) = e(k) - elk-1) (2)
where ief(k) represents the reference current of one phase, iwx(l)
represents the actual current of one phase in k-th sampling interval

The general current response in one arm is shown in Fig. 2. where
one represents the current response which has multiple switching
states affected by switching states in other arms and the other
represents a switching state in one arm.
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Figure 2. Current response corresponding to switching state

In accordance with the magnitude and sign of Ae(k), actual
current is classified into seven cases. For each case, error e(k) is
also classified as the same way. The linguistic variables used for
identifying the each case are defined as follows:

case [ ¢ 4de = PB
case II ¢ de = PM
case I : de =PS
case IV : de=ZE
case V ¢ de=NS
case VI : de=NM
case VI . de = NB

where N, P, B, M, S and ZE represent negative, positive, big,
small, medium, and zero.

In the case I, the magnitude of e(k) is much greater than that of
e(k-1). For each case of e(k), the output of fuzzy current controller
(the change of the inverter on-time width) should be determined
based on expert’s intuition and experience in such a way e(k+l)
will become zero. For instance, if e(k) is NS and Ae(k) is PB, then
the change of on-time width should be NM. NM means that
(k+1)th on-time width decreases to some extent compared with

Pulse Width
Switching Changes
State 1
L time
k-1 k+1
where e(k) : NS, ae(k) = PB
Figure 3. Determination of fuzzy control rules

After determination of fuzzy control nules, the next step is to
define the membership functions corresponding to each element in
the linguistic set. Even though many types of membership functions
have been already developed, for simplicity, triangular membership
function are used in this paper. The universe of discourse of the
error and error change ranges from -3{A] to +3[A] respectively.
The membership functions are shown in Fig. 4 Finally for
synthesis of the final control action, the center of gravity is used

The error and error change should be appropriately mapped onto
the predefined universe of discourse. The performance of fuzzy
control system depends on this scaling mapping. Usually, the
procedure for determining the optimal value of these scale factors,
however, does not have unique solution. Therefore, optimal
performance can not be guaranteed with arbitrary scale factors.
Moreover, parameter variation of IM may incur poor dynamic
response with this fixed scale factors. In this paper, in order to
overcome these drawbacks, the concept of ANN estimation
methodology is developed with fuzzy control.
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Figure 4. Membership functions

4. NEURAL NETWORK ESTIMATION UNIT

ANN has very useful properties. For instance, when the fraining
set contains noisy or inconsistent examples, during the learning
phase ANN extracts the characteristics of IM. After learning, ANN
can generalize, giving correct responses even in the presence of
patterns that are not included in the training set. Furthermore,
when the input-output mapping can be obtained by applying some
type of rule, the network tends to discover the rule instead of
memorizing the input-output pattern pairs. In this paper, we focus
our effort on the learning ability of ANN for the enhanccment of
control performance. Up to date there have been many kinds of
learning methodologies of ANN for practical application and new
methods are now still under elaboration. This paper employs a
multilayer perceptron model (PDP-model) with error back
propagation (EBP) which is one of the adaptive leaming models,
and also one of the most powerful tools in the area of ANN
technologies until now. [13]

The EBP algorithm uses an objective function, which is defined
as the summation of square errors between the desired outputs and
the network outputs. It then employs a steepest-descent search

—228—



algorithm to find the minimum of the objective function. The
equations to change the weights of output-layer and hidden-layer,
are as follows:

AWpqk(n+1} = 7+ 8gk-OUTp] + a- 4Wpakin) 3)
Wpqk(n+l) = Wpqkin) + 4Wpgki{n+l) 4)
Sqk = errorgk f (NETq,k) 5)

where,

a = momentum factor
7 = learning rate
Wpakn) = interconnection weights between p’th neuron of

output - layer and gq’th neuron of hidden-layer {(subscript k means
by the target-layer)

Wpg.k(n+1) = weight values at step (n+1)
errorq = the difference between the desired or target
value and the actual output at q'th neuron of output layer
&gk = backpropagated error at q'th neuron of
k'th-layer.
OUTp,i = output value of neuron p at j’th-layer.
NETqk = NET(Summation) value of q'th neuron at
k'th-layer.

f(NETqk) = the differential value of activation function

Note that above subscripts, "p” and "g" correspond to specified
neuron in each-layer. The symbol “j” and "k” represent each-layer.
In the case of hidden-layer, error 6q,k is obtained by equ. (6).

8pj = (X dqk-Wpak) f (NETp)) ®
at hidden layer

TFig. 5 shows the proposed architecture of ANN, where ANN
consist of 15 neurons in input layer, 30 neurons in two hidden layer
respectively, and 3 neurons in output layer. Table 2 shows
parameters and their values of the developed ANN used for
estimation unit,

In the learning phase, the inputs of the ANN for error estimation
unit are composed of e(k-1), .. e(k-5) at each sampling time[14]
The outputs of ANN unit are the estimated present errors, e'(k),
of each phase current. The ANN is learned or trained in such a
way that outputs of ANN converge to actual errors. In this paper,
the differences between the desired or target values and the actual
?utputs at first, second, and third neuron of output layer are as
ollows:

errorl = e{k)- €"y(k) ]
error = ey(k)- &' (k) 8)
error3 = eu{k)- e'w(k) (9)

When the learning is accomplished with these training samples, the
proposed ANN is changed in the recall phase and predicts the next
step errors e'(k+1) of 3 phase with inputs consisting of ek, ... ,
e(k-4). This predicted error is used to compensate the input of the
fuzzy controller, which determine the PWM on time wicth.
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Figure 5. The architecture of ANN

5. SIMULATION RESULTS

In order to test the performance of the proposed control system
and compare with other conventional control system, performance
index is defined as follows :

/Z (lulo-tu00Y+E v 0-iv0Y G wlid-iw()F)

1=/ (10)

4 N
where i'u(k), i'v(k), and i"'w(k) represent the reference current of u,
v, and w phase respectively, iu(l), iv(k), and iw(k) represent the
actual cwrrent, and N represents the sampling number in one period.

For comparison, we used hysteresis band, ramp comparison
current control system, which are applied to many commercial
industrial drive systems. In addition, the fuzzy controller which has
the membership function in Fig, 4 and proposed controller using
completely Jearned neuwral network which has same membership
function, are also compared The specification of 3 phase SHp IM
for the simulation is shown in Table 3. In this paper, average
inverter frequency of each controller is 4KHz. In general hysteresis
controller has better characteristics due to the shorter band It,
however, is to obfain proper switching operation with shorter band
as claimed at [6]. This is because the inverter has some periods of

high switching frequency., In this paper , the average sthchmg
frequency of the hysteresis controller is approximately 4 KiHz by
setting the hysteresis band to 1[A]l. Fig. 6 shows the performance
index I of each control system with respect to various motor speed
wrad/s] at no load operation. As clearly shown in Fig. 6, the
fuzzy controller has better performance compared with other control
systems. Furthermore, the proposed system, the fuzzy controller
with pre-learned for the one-step ahead error prediction, has the
best performance among others. Even though the hysteresis control
systemn has poor performance compared to other systems, its rms
error value remains constant through all operating speed range. As
opposed to the hysteresis control system, the rms error value of
other control systems tend to increase as operating speed increases.
The proposed control systermn, however, significantly reduce the
current ripple through all operating speed range.

For detail analysis of control performance on time domain, the
current response of each control system (under no load condition
with speed reference, 100(rad/s]) is provided in Fig. 7, 8, 9, and 10.
Fig. 7, Fig. 8 Fig. 9, and Fig. 10 show the responses of the
inverter output current for hysteresis, ramp comparison, fuzzy,
and proposed current controller respectively at no load condition
Fig. 7 shows the current response of hysteresis controller with
hysteresis band 1[A]. As shown in this figure, quite a large current
ripple can be observed. Fig. 8 shows the current response of ramp
comparison controller where current ripple is significantly reduced
compared with hysteresis controller, But this control system incurs
time-delay which deteriorates overall control performance of
Field-Oriented Controller for M. The current response of fuzzy
control system is shown in Fig. 9. Compared to hysteresis controller
and ramp comparison controller, this control system a little bit
reduces the current ripple as well as time-delay. The current ripple
remains stil large. ‘The control performance of proposed control
system is illustrated in Fig. 10. Compared with Fig. 7 ~ Fig. §, the
proposed system successfully suppresses current ripple and
significantly improves control performance in term of performance
index value.

Fig. 11 and Fig. 12 show the control performance of fuzzy and
proposed control system under variation of rotor resistance. In this
simulation, we used 200% variation of rated rotor resistance. From
these figure, we can conclude that the control system implemented
based on fuzzy theory are insensitive to the variation of rotor
resistance of IM. Fig. 13 shows the current tracking performance of
the proposed control system under abrupt load change. As clearly
shown in the figure, the tracking emor is invariant even under
abrupt load variation.

From the above simulations, we show that fuzzy current
controller with neural network has outstanding better performance
through all operating speed range. Especially, under the parameter
variation and abrupt load changes, the proposed control system has
good adaptability.

6. CONCLUSION

In this paper, a novel adaptive fuzzy current controller using
ANN is proposed. ANN learns the characteristics of DM and
modifies the error applied to fuzzy current controller. The proposed
control system is applied to the field-oriented controlled IM drive
systern. This paper aims at establishing a completely new control
system which shows a superb performance compared with
conventional IM drive systems even under parameter variations and
abrupt load changes. Through the simulations, we verified that the
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proposed controller has a good adaptability due to ANN learning
ability.

For further elaborations related to this research work, we will
develop the better estimation methodology based on ANN and better
adaptation mechanism in order to reduce effects of the system
parameter variation on the control performance.
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