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Abstract

We present the discrete event systems modeled by finite state ma-
chines in this paper using the boolean matrices and vectors. We propose a.
discrete-gvent syst The
proposed supervisor synthesis algorithm is practically implementable, since

supervisor synthesis method for such bool

the size of the state vector in the product system does not increase expo-

nentially with the number of components.

1 Introduction

Several classes of models have been proposed for describing the
behavior of discrete-event systems (DES’s) including Petri nets[5] and
finite state machines (FSM’s). Automata and formal language model-
s, initiated by Ramadge and Wonham {3],{4],(6], have been successful-
ly used to study the properties of the DES in a variety of applications.
Their theory provides algorithms for the automatic synthesis of su-
pervisory controllers from their specifications. However an explict
implementation of these algorithms is often not practical because the
size of the state is very large. Hence, realistic automatic synthesis
tools for discrete-event controllers need to be studied. Only a few
researches are reported for this subject [10},[11]. In [10} a relational
algebraic approcah is used for representing and analysing the DES’s.
This approach is advantageous from the point of view of implementa-
tion and ability to handle iarge systems, not from the point of view of
execution time and the size of state. In {11] binary decision diagram-
s(BDD) are used for the implementation of the automatic synthesis
algorithms. The BDD is a pact symbolic repr ation method
that avoids explicit enumeration of the entire discrete state space.
Using BDD's, we can merely reduce the size of boolean functions.
These researches provide only efficient representation methods of the
boolean functions and algorithms. These methods manipulate the
large number of states when the plant is a product system of some
synchronous components.

The formal langnage model is essentially based on the FSM. Hence,
the formal language model can be represented by a boolean system
which is composed of boolean state vectors and transition matrices.
In the supervisory control theory, the plant is different from the con-
troller since the plant is a generator of sequences of events and the
supervisor is a controller which enables and disables the events. Using
the boolean matrix representations, the generator and the supervisor
have the same boolean structure. The supervisory control system
can be considered as a synchronous composition of the plant and
the supervisor. In this paper we propose an automatic supervisor
synthesis method for such boolean discrete-event systems(BDES’s).
Using the BDES representation, we redefine the languages and some
properties including completeness and neatness. It is shown that the
accessible states set and the co-accessible states set can be obtained
by finite number of boolean operations. The synchronous composi-
tion{1],[8],[9], the completely synchronous composition[6], and the bi-
ased synchronous composition {2} are represented by BDES’s. When
we use the BDES representation of formal language model, the size of
the state vector is not expenential in the number of synchroneus com-

ponents of product systems. Ilence, the proposed supervisor synthesis
method provides a realistic automatic synthesis tool for discrete-event
systems.

2 Boolean Discrete Event Systems

In the supervisory control theory, a DES is modeled by a 5-tuple

g'—'(QyEvf»‘Dst)v (1

where Q is the finite set of states, X is the finite set of cvents. f C
2 % Q x Q is the transition relation and g C Q is the initial state
and Qp, C 29 is the marked states set. We will identify the relation f
with the point-to-set function f (o, ;) = {¢g; € Q|(¢, &, @) € /} where
¢ € Q, 0 € . And we say that f(o0,q;) is defined if it is nonempty.
Throughout the paper, we will consider the deterministic DES,
i.e. f(o,q) contains at most one state for every (0,9:) € 2 x Q. [
can be extended to set-to-set function f : £ x 29 — 29 by f(o,q) =
UsegS(0,4:) where g is a subset of Q, le. ¢ c Q. The function
f preserves the nature of the function f since f(g, {g:}) = f (0,9
where g; € Q. Hence, we will identify the set-to-set function f with
the point-to-set function f and the singleton set {g;} with the state
i

Ordering the state of the system, we can represent a subset of the
states set Q as a boolean vector g € By, & 29 where n= 1Q]. We
will identify the subset of Q with the boolean vector of Byy;. The
transition relations of the DES can be represented by boolean ma-
trices M € Bpy, whose elements are 0 or 1. We identify each state ¢;
with the boolean vector whose elements are zero except i'th element.
The empty state set is represented by the boolean vector Opxy. The
set Q is represented by the boolean vector 1,,.. In the boolean ma-
trix M, each column number means the starting state number and
each row number means the endding state number. Hence, if the
element my; of the transition matrix M is 1, then the transition from
@i to g; is possible, otherwise impossible, Let Mg be the set of all
boolean transition matrices of Q. The operator V, A, and ® is defined
for these transition matrices and vectors. And, the transition matrix
M{o) can be defined for each event ¢ € £ such that if the eurrent
state is g, then the next state is M(0) ® ¢. The boolean transition
matrix is also defined on the set of strings, £, by

M(e) = Iun, (2)

M{sa) M(a)o M{s) (3)

1

where ¢ is the empty string.

Using the boolean state vectors and the boolean state transition
matrices, the dynamical equations [7},[8],[9] of the DES §

J(ok +1), o(R)),

qk+1) = )
olk+1) ¢ S(g(k), Vk
can be represented by the boolean equations
gk+1) = M{o(k+1))@qk), )
olk+1) ¢ Nogk), Vk :
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where M, N are defined appropriately and Z(q) C Z is the set of
possible transition events out of the statcs set q. The boolean system
can be partitioned into two subsystems, BDES and EGS, as follows:

i k4] = Moo,
moms) {700 2 Mo ©
(EGS) olk+1) & 1K), Yk 7

The first subsystem, the boolean discrete event system (BDES), is
a discrete time system whose state transition matrix varies with the
current event 0. The second subsystem, the event generation system
(EGS), generates all events which are not in the control pattern -.
The behaviors of the DES are fully determined by the BDES.

In general, a BDES is characterized by the 5-tuple
D =(Q,%a, Ze, M, N) O]
where M is a boolean map such that
M : T, — Buxn ™ My ©)
and N € By, is a boolean matrix such that
NogcZ, YqCQ (10)

where }Q| = n, |[Z] = 1. X, is the acceptable events set and X, is
the controllable events set of the BDES. The acceptable event o
makes a state transition of the system i.e. M(0) # I« The BDES
controlls the EGS by the control pattern ~ which is a subset of the
controllable events set ¥,. The EGS cannot generate events in the
control pattern .

In the usual supervisory contorl theory of Ramadge and Wonham,
the control pattern is used for representing the enabling cvents set.
In this paper we use the control pattern as a disabling events set.
However, our control pattern performs the same control action as the
usual one.

The EGS can generate all events in the universe i.e. in the set
Yyniv- The DES D uses only acceptable events in the set X,. The
unacceptable events of the DES D, i.e. not in the set Iy, do not have
an effect on the DES. This means that the transition relations due to
the unacceptable events are identity. Hence, the transition map M
has natural extension Mg as follows :

Mg ' Zunrv— Bnxn (11)
_ M(o) ,0€Z,
Mg(o) = { JTnxn  ,otherwise. (12)

‘We will identify the map M with the extended transition map Mp.

3 Languages and Properties of BDES

The behavior of the BDES is described by the language accepted
by the system. Using the boolean matrices of the BDES, the language
which is accepted by the system D from the initial state gp C Q is
defined by

L(D; g0) := {w}w € £ and M(w) © g # 0}. (19)

The language from the inital state g C Q to the marked states sct
Qm G 29 is defined by

L(Qm;D; qo) = {w|w e X, and M(w) ® ¢ € Qui}. (20)

The languages of the BDES D are defined by the state transition
matrices. The dynamic behavior of the BDES is characterized by
both the state transition matrices M (-} and the event control matrix
N. Because of the control action of the BDES, the dynamic behaviors
is not well defined for some BDES's. For example, let g be a state
of the system D and 0 ¢ N ® q and M (o) ® ¢ = 0. Namely, the
transition due to the event o is not defined at the state g but the
event o can occur at the state q. This situation is not realistic since
state transitions of the real system arc always defined for all real
events. The BDES said to be cormplete when the system avoids this
non-realistic situation. The formal definition of the completeness is
as follows.

DEFINITION 1 D is said Lo be complete (or well-defined)
in Q. C Q if and only if there is no state g; € Q. and 0 € ¥,
such that c g N ® qi, and M(6)© ¢:=0.

When Q. = @, D is said to be complete. If the BDES D is not
complete, then for some g; € Q there exists a behavior (or a string)
s & L(D; i) which can appear in the DES. Another property of the
DES is the neatness which is defined as follows.

DEFINITION 2 D i3 said to be neat in Q, C Q if and only
if there is no state ¢ € Q and £ € X, such that 0 €N @ g;, and
M@)o qa#0.

When Q, = Q, D is said to be neat. The neatness means that the
transition is defined only for the enabled events at each state of the
system. The neat BDES D accept all behaviors (or strings) in the
language L(D; g), @ C Q. If the BDES D is not neat, then for some
q; € Q there exists a string s € L{D; ;) which cannot appear in the
DES.

When an initial state g of the BDES D is given, there exist
states such that D can never reach from g. We need not consider
such inaccessible states when the initial state is given. The accessible
states set of D which starts from the initial state go is defined to be

Que(Di ) =={gC QfFwe Iistg=Mw)@n#0}.  (21)

The accessible states set can be obtained by finite number of compu-
tations as in the following theorem.

THEOREM 1 Qae(D;0) = Uperr {M © g} where M* :=
H(M(Z,)" and n=Q].

In Theorem 1, M(Z,) is defined by

M(E8.) = {M(0) € Buxnlo € Zu} (22}
and M(5,)" is defined by

M(Z) = M(Z)0- 0 M(Z,) (23)

= (MIM=MO0O- -0M,; (24)

My, ., M; € M(Z0)}.
The BDES D is said to be accessible from the initial states set qq
when
V =2 (25)
3€Qu{Dign)

The co-accessible states set Qg to the marked states set Qp, is
defined to be

Qeo(Qmi D) = {gC QPw € Z; and M(w) ® g€ qm}.  (26)
The BDES is said to be co-accessible to the marked states set Qp,
when
V g¢=¢ (27)
7€ Qee(Qm D)

The co-accessible set also can be obtained by finite number of boolean
computations as in the following theorem.

THEOREM? Qeo(Q@mi D) = Uprenr {M ' Ogm) where M* :=
U?:_ll(M(Ea))' and n=|Q|.

In Theorem 2, the inverse is defined by

M1'OQu={7C QMO g€ Q). (28)
D is said to be trim from ¢ to @, when D is accessible from gy and

co-accessible to Q. The trim states set Q. (qm; D; ) is defined to
be the sct

Qir(Qm; D3 90) = Qeo(Qum; D)n Qae(D; ). (29)

When the BDES D is complete in Q,.(D;q) then we will say that
D is complete from ¢.
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4 Synchronous Composition of BDES’s

Most of discrete event systems can be represented by the syn-
chronous composition of subsystems. These interconnected systems
can be represented by modelling each subsystem as a BDES and
describing the connections between them. We will decribe the syn-
chronous compoesition used by Varaiyal]. Let G; = (@, Z5, fi, 90, Qim)
1,2 be generators, Let L = X, U 5. The generator § ;= Gl Gais
defined as § = (Q, £, f, . 9m), where @ = Q1 x Oz, ¢ = (g0, g0},
Qm = Qim X Qo and f = f; || fo is given by : f(o,q) is undefined
if for some i, 0 € I; and f{o,q;) is undefined, ¢ € f{o,q) with
;€ f{o,q;) for all i such that 0 € 5}, and ¢; = g; for all isuch that
o & L. Thus, in the connected machine G, the common events must
occur simnltaneously. The BDES representation of the synchronous
composition is as follows.

Let G; be the BDES of the generator G;, i.c.
Gi=(QiTis T, My NY) i=1,2 . (30)

The BDES G = (G, | Gy) is defined as G = (Q, 5o, 5o M, ),
where Q = QUQy, Ly = L1 U Loy, L = 5y, U 5y, and

=] A
'K [ ® ], (31)
M 0
M:z[ o Mz}, (32)
Ny 0 } D= I,
Ni=| Ng Ny | } DNy . (33)
0 lvn } ):Ze - Slc

The boolean matrices

- Ny 5 Ny
Nj = - = = 4
! [ Ny }’ M [ Ny } ()

can be obtained by exchanging rows of the boolean matrices, N} and
Ny, respectively.

The initial state of the composition system G, || Gy is given by

%I=[g;z]- (35)

The marked states set of the compoesition system G; || G, is given by

Qnm = {[ 2: J loim € Qim and Pom € QZm} . (36}

5 Supervisor Synthesis

In this section, we design a supervisor of the plant
G= (Q,E, E,ngNg}' (40)

The objectives of the supervisory control can be represented by the
desired language L. In this paper it is assumed that the desired
language js regular, i.e. there exists a desired recognizer

D = (¥ L, B, My, Ny} (41

and an initial state such that L(D;w) = Lz We aussume that all
controllable events are acceptable e, X, Lo and all events are
observable.

If the desired recognizer D is complete, then the recognizer is the
desired supervisor. Otherwise, a simple supervisor can be obtained by
removing the incomplete state from the recognizer and reconstructing
the recognizer, This removing process restricts the possible behavior
of the supervisory control system.

Since the plant also controls the events, the synchronous compo-
sition system S := G {| D of the plant and the desired recognizer
may be complete from the initial state zp := (0, ). Hence, it is
needed to make a synchronous composition system S and check the
completeness of the system from the initial state zp. I the syn-
chronous composition system is complete from the initial state, then
the recognizer is the desired supervisor.

‘exponentially in the b p ts, the prop

The synchronous composition system S may be incomplete from
the initial state xzp, then we remove the incomplete states from the
accessible state set Qu0(8;%o). Let’s denote the incomplete states set
of Qu{S;zo) by Xu. These incomplete states are inhibited states
from the system S. If there exists a uncontrollable event ¢ € £, — X
from the state  to Xy, then we must inhibit the state Z from the
system S. Hence, we insert this inhibit state £ into the set Xp. Con-
tinuing this inserting process, the synchronons composition sy?,tcm
8 is complete in the set X¢ = (Qac(8;m0) — Xx) and there is no
uncontrollable behavior from the set X¢ to the set Xy. In order to
design the supervisor, it is needed to assign a contol map ¢ to the sct
Xc. The objective of the control map is that the system S cannot
reach the set Xy . Hence, the control map removes the connection
between the set X¢ and the set Xp. This map is easily obtained by
some boolean operations.

Finally, the supervisor is a pair
S = (8,9). ] (42)

The proposed supervisor is composed of Lhe plant and the recognizer
simulator and the control map ¢. The on-line computation of the
the control map ¢ may be possible when the size of Xy is small. If
this on-line computation is possible then less memory is required to
implement the supervisor with the computer.

Boolean matrix and vector operations are required to synthesis:
our supervisor. Since the size of the boolean matrix and the vector
does not increase exponentially in the number of compenents of the
product system, our supervisor synthesis method has advantages for
supervisory control of the composition system which has a lot of
common events.

6 Conclusion

Tn this paper we represent the discrete event system using the
boolean matrices and vectors. We redefine the languages and some
properties of the BDES. The accessible and the coaccessible states
sets are computed by finite boolean operations. The synchronous
composition, the completely synchronous composition, and the bi-
ased synchronous composition are represented by the BDES. It is
shown that the supervisory control system is represented by the syn-
chronous composition system of the plant and the supervisor. The
proposed supervisor synthesis methed requires boolean operations of
the synchronous composition system of the plant and the desi.red rec-
ognizer. Since the size of the boolean state vector does not mcre:ase
i supervisor
synthesis method is practically implementable. In this paper we as-
sume that the controllable events are observable. Future researches
are needed to relax this assumption.
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