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Abstract

In this paper, a design method of controller which
incorporates pole restriction into implicit self tuning
algorithm is proposed. The idea behind pole restriction
is that the closed loop poles of the system are
restricted to a user-chosen circle in the region to meet
maximum percentage overshoot and settling time
specification. Most algorithms based on pole restriction
are explicit schemes involving a parameter estimation
and synthesis stage to obtain controller parameters,
The object of this paper is to have an algorithm that
has the idea of pole restriction and the simplicity of
the implicit approach.

1. Introduction

One of important classes of adaptive controllers is
the self-tuning controller proposed by Astrom and
Wittenmark{l] and extended by Clarke and
Gawthrop{2] as the generalized minimum variance
controller. These controllers based on modern control
theory ‘and include a selection of the weighting
polynomials associated with the performance criteria.
The selection of the weighting polynomials in
performance criteria is not easy for the engineers. The
system performance is usually specified in qualitative
terns and it is not obvious how the polynomials
should be chosen to achieve the desired performane.

To choose the appropriate weighting polynomials
P(z'") and Q(z'Y), a trial and error procedure may be
used. Alternatively, the pole placement procedure has
been presented in Allidina and Hughes(3]. This method
is a suitable design approach for processes with

nonminimum phase behavior and with maximum
system response rate constraints. However, placing
closed-loop poles to fixed and prescribed locations in
the z-plane may not always result in the desired
performance when the process dynamics are varying.
Instead of using pole placement, Lim et al.[4] proposed
the use of pole restriction. The pole restriction method
is not to fix the closed-loop poles at fixed location but
to restrict the poles to be within a certain permissible
region defined by engineering specifications, such as
maximum percentage overshoot, settling time etc[5]).

In self tuning control there are two basic schemes,
'explicit' or 'implicit'. An explicit scheme is one where
the parameters being estimated are the system
parameters which are then used to synthesize a set of
controller parameters. An implicit scheme is the one
where the controller parameters are estimated directly.
With the implicit schemes, there is an attraction
benefit that the design calculations are simplified
considerably[6]. Most algorithms based on pole
restriction are explicit schemes involving a parameter
estimation and synthesis stage to obtain controller
parameters.

This paper presents a design method of controller
which is combined implicit schemes with the pole
restriction procedure based on the algorithm of [5).
The proposed algorithm has the advantages of the
implicit approch in which the design calculations are
simplified considerably.

2. Self-tuning controller design.

Single-input/sigle-output randomly disturbed system
is represented by the discrete-time parametric model.

Ay(t)=g *Bu(t)+CE (1) )
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where A ,B and C are polynominals in q* , with
ao=co=1, and Kk represents the system time delay in
sample instants. Variables y and u are the system
output and input, with € an uncorrelated random
sequence of zero mean. The argument of the variables
corresponds to the sampling instant.

The control laws for self tuning was developed by
Clarke and Gawthrop[2] has as its target control
objective the minimisation of the variance of the plant
output y(t). By introducing a cost function
incorporating system input, output and set point
variations, the facility for control input weighting and
set point following is provided in addition to the
capability of dealing with nonminimum phase systems.
The control law is based on prediction and the control
objective can be stated as minimizing the variance of
an auxiliary function ®(t), defined as:

®(t)=Py()+ Qul¢t-k)- Rr(t-k) 2)
where P,Q and R are weighting polynomials in g ,
r(t) is the reference set point. The function ®(t) can
be considered to be the output of the auxiliary system
shown in Fig. 1. The object of the self tuning
controller becomes that of minimizing

J=E[®%(t+k)) K))

where E[*] is the expectation operator.
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Fig. 1. Block diagram of the generalized minimum-
variance controller

It can be shown that (2) and (1) can be combined to
give

®(t+k)= L (HuD+ Gy ErO) FE(0 @

where

H=BF + QC, E =-CR (5)

and the order of F is (k-1). F and G are defined
according to

PC -« G
4 F+q A 6)
or equivalently
PC=AF+q’*G v

The minimum variance of the auxiliary output signal
is obtained when the following control law is used

Hu(t)+Gy(¢)+ Er(t)=0 (8)

The orders of the controller polynomials H,G and E
are set to

ng=(ng+nc)or{ng+k-1)
ng=(na~1) or (mp+ ngc -1)
ng = (nc+ ng)

where np, ng, ng are the orders of the auxiliary
function polynomials P, Q and R respectively.

In self tuning, the parameters of H,G and E can be
identified from (4), using recursive least squares, and
then these estimated parameters can be employed in
the control law of (8).

3. Proposed algorithm

3.1 The closed loop system

The self tuning controller described in section 2 gives
the closed-loop equations

R
9= PR -+ s £ (0 )

Often me control weighting polynomial Q is written in
the 4Q. Then (9) becomes

y(¢)=

BR ) H
BP+ 40 "R BEaagT £ (o)

The characteristic equation of the closed loop system
is
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BP+XAQ =0 (11)

For (11) to have a solution, the order of the
polynomials P and Q' must be:

np = nA-l , g = D.B‘l

When self tuning, the system parameters A and B are
unknown and hence (11) cannot be solved directly to
obtain the appropriate P and Q of the performance cost
function. However, multiplying (11) throughout by F
gives

BPF+ AAFQ =0
Substituting for AF from (7) results in

BPF+APCQ -0 %2GQ =0
Further use of (5) reduces this to

PH-¢%2GQ =0 (12)
or equivalently

I+AT=0 (13)

where 1 = PH and T = -g* GQ , 4 can be
interpreted as the root-locus parameter that moves the
closed~-loop poles from the roots of I to those of T.

- 3.2 Pole restriction

The design of a control system involves the
changing of systern parameters and/or the addition of
compensators to achieve certain desired system
characteristics. With a known plant, lead and/or lag
compepsators can be designed for the system to meet
output performance specifications such as maximum
percentage overshoot and settling time. The classical
control theory can be used to design the control
weighting polynomials P and 1/Q’ as lead and/or lag
compensators to meet output performance specifications
of maximum percentage overshoot and settling time.

In all systems, the transient response can be
characterised by the location of the closed-loop poles.
From the performance specifications, a certain desired
region can be specified in which the closed-loop poles
will reside(5].

In classical control root-locus design, a value of the

root-locus parameter is determined offline to bring the
closed-loop poles to desired locations to meet
performance specifications. Similarly, this algorithm
calculates online a value for the root-locus parameter
A to bring the closed poles of the system, as defined
in (13), into the defined circle to meet the maximum
percentage overshooot and settling time specifications.

The solution of the pole restriction problem involves
the transformation of the desired circle in the z-plane
to a new o-plane . As in Wittenmark et all7l,
employed is the bilinear transformation which is shown
as

. lte
=yt a (14)

where @ and B are constants and z is equivalent to
q. It transforms a circle in the z-plane into the left
half w-plane ( See Fig. 2).

» -plane

Fig. 2 Bilinear transformation

From (13), the characteristic equation of the
closed-loop system may be described by the following
equation.

§(1.-+ AT)z7=0 (15)

where n is the order of the equation, and I; and T; are
the coefficients of the polynomials [ and T
respectively. Applying the bilinear transformation (14)
to (15), we obtain

gl‘tw"_'=0 (16)

where v; is a function of a,8,4
coefficients of polynomials I and T.
Restricting the closed-loop poles to the desired circle

is equivalent to confining the roots of (16) to the

as well as
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left-half plane. This implies that there must exist a A
such that the characteristic polynomial in (16) is
Hurwitz. It is obvious that the resuitant closed-loop
poles are stable. The value of A can be determined by
directly applying the Routh-Hurwitz criterion. A
detailed description of finding the value A is be in [51.

3.3 Algorithm

In this subsection, an algorithm to incorporate pole
restriction into the implicit self~tuning controller can
be summarised as follows:

Step 1t Choose weighting polynomials P,Q and R and
form

@ (¢)=Py(t)+ Qu(t-k)- Rr(t-k)

Step 2: Estimate parameters of the polynomials H,G
and E from

® (0= L (Hu(e-1)+Gyte- K0+ Er(t-10) s (),
(e(D=F £ (t))
Step 3: Apply control u(t) according to the control law
Hu()+Gy()+Er{t)=0
Step 4 Assign to A, the lower bound of the solution to

the inequalities given in the Appendix of (5].

Step 5 Repeat step 2 through step 4.

4. Simulation

The result of the implicit generalized self tuning
controller with pole restriction algorithm will be given
in terms of simulated example.

Example

Consider the nonminimum phase system defined by
(l-q")y(t)=q"(1+0.5q“)u(t)+(1—0.2q")6 (0
where £ is Gaussian white noise with variance 0.015,

This system could arise by sampling the continuous
time system given by

G(s)=25exp(-0.16s)+ -L-

at a sampling interval of 100 ms. The output
performance specifications for set point response are
209 overshoot and 2% settling time within 30
samples. These specifications are met if the
closed-loop poles in a z-plane circle of center 0.3 and
radius 0.5.

The orders of the controller and the weighting
polynomial P and Q are

deg H=deg B+k-1=2
deg G =deg A - 1=0
deg E=deg C +deg R=1
deg P =deg A -1 =0
deg Q =deg B-1=0

The polynomials are choosen as P = Q =1 and the
reference following achieved by settling R =P. The
forgetting factor of the least squres estimator is fixed
at 0.995.

Fig. 3 shows the simulation results.
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Fig. 3. Response of the system by the proposed method

In Fig. 3, the control weighting parameter 2 is
"shown that there is the flexibility to define weighting
polynomials P and Q . to achieve certain control
objectives.

5. Conclusion

This paper has discussed the implicit self tuning
controller with pole restriction procedure, The
closed-loop poles are restricted to a region determined
from output settling time and maximum percentage
overshoot. The pole restriction design has useful
properties when the plant dynamics are varying due to

changes in operation condition. The imlpicit scheme
does not have disadvantages normally associated with
explicit pole restriction concerning the solution of the
diophantine equation in terms of computational
requirements and the problem of having common
factors in this equation. The proposed algorithm has
good transient performance due to pole restriction and
the simplicity of the implicit approach.
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