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Abstract
obtaining Volterra kernals of a nonlincar sys-

A new method is proposed for

tem by use of pseudorandomn M-sequences and
correlation technique.
to a noulinear systemn and the crosscorrelation
function between the input aud the output dis-
plays not only the linear impulse response of
the linear part of the systern, but also crosssee-
tions of the Volterra kernals of nonlinear sys-
tein. Simulations are carried out for up to 3rd
order Volterra kernal, and the results show a
good agrecment with the theoretical conusidera-
tions.

1 Introduction

Identification of a noulinear system is an imnpor-
tant task for controlling dynamical behavior of
a systewn, since the systemn to be identificd in-
cludes nonlinear portions in general.

A ponlinear dynamical system is, in general,
described by user of Volterra series expaunsion,
cach term containing so called Volterra kernals.
So the measurement of Volterra kernals attracts
attentibns of many résearchers D=9

Barker et al¥=" proposed the use of pseu-
dorandom signals, especially antisvimmetric M-
sequence, for obtaining 2nd-order Volterra ker-
nals with restricted conditions .

The anthors propose here a new method for
obtaining not only the linear iinpulse response,
but also Volterra kernal of noanlinear systemn si-
multancously.

A pseudorandom M-sequence,
specially chosen beforehand, is applied to the
nounlinear systemn, and the crosscorrelation func-
tion between the input and the output is cal-

M-sequence is applied
1

culated. Then the linear impulse response to-
gether with several erosssections of the Volterra
kernals are obtained.  The computer simula-
tions are carried out for nonlinear system hav-
ing up to 3rd order Volterra kernal | and the
results show a good agreement with the theo-
retical considerations. ‘

2 Principle of the method

A nonlincar dynamical system is, in general,
deseribed as follows,

”(" o~ o ~
y(l) = / / / GilTey T2, 0 T,
y(!) ,§:| A Jo gi{ti, T2 i)

xu(t — r)u(t = 79) -t — )drydry - dry (h

where u(f) is the input, and y(#) is the output of
the nonlinear systemn, and g;(71, 79, ...} is called

Volterra kernal of i-th order.

When we take the crosscorrelation funetion
between the input w(t) and the outpnt y(t), we
Lhave,

Buy(7) = wll — 7 )y(l)

o~

o e ~
= / / / gi(T1y 7oy - T)
S0 J0 J

=1

xu(l ~)u(d — 7)) u(t — r)drydry - - dr;

where ¢,,(7) is the crosscorrelation function of
u(1) and y(t) and

age,

denotes time aver-

The difficulty of obtaining ¢;(7, 79, - - - 73) [rom
Puy(T) 15, 10 genercal, die to the difficalty of
getting (74 1) moment of the input u(f), he-
cause the n-th moment of the signal is very if-
fieudt to obtain for actual signals.
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Here we will show that when we use an M-
sequience as an input to the system, the n-th
moment of u(t) can be casily obtained by use
of so-called "shift. and add property” of the M-
sequence. So we can obtain the Volterra kernal
gi(71, 79, -+ 77) from simply measuring the cross-
corrclation function between the input and out-
put of the nonlinear systeun.

The (14 1)th moment of the input M-sequence
u(t) can be written as

u(t - T)It(t — T])u,(t —7y)-eult — 1)
{ 1 (for certain 7)

—1/N (stherwise) (3)

wliere IV is the period of the M-sequence. When
we use the M-sequence with the degree greater
than 10, 1/N is smaller than 107 So E«.(3)
can be approximated as a set of ilpulses which
‘appear at certain 7's.

Eq.(3) is due to the so-called shift and add
property of the M-sequence; that is, for any in-
teger Ky, kg, -+ kioy (suppose by < kg < oo k),
there exists a unique ki{modN) such that

w(B)u(t 4+ kyu(t + ko) - - w(t + kiy) = u(t+ k)
(4)

Therefore Eq.(3) becomes unity when
n=71t—-kyn=r-ky,---nn=7r—-Fk (3

Therefore Eq.(2) becomes

¢uy(7-) - Z _(]i(T - kl» T — ]"‘23 R ]"i) (G)

=1
Since (71,79, 7;) is zero when any of 7; s
smaller than zero, cach ¢gi(7—ky, 7—hy, - - 7—k;)
in Eq.(6) appear in the crosscorrelation fune-
tion ;(buy(r) when 7 > &y
ki of i-th Volterra kernal ¢g; as k!, and if each
ki =1,2,--) are sufficiently apart from cach

If we denote the

othier(say, more than 50A¢ where At is the
time increment of the measureient tune), we
can obtain cach Volterra kernal gi(r — oy, 7 —
kg, -+, 1 — ki) from Eq.(6).

qgi(71, T2, - -+ 7;) are obtained as a set ol cross-

Volterra kernals
sections along 45 lines 1 (7,79, -+, 7;) plane
as shown in Fig.1. In order for this to he real-
ized, we have to sclect M-sequence as deseribed
later,

3 Measurement of 2nd Volterra Kernal

An example of obtaining second Volterra kernal
by this metliod is shown here.

The svstem Lo be identified 1s assuined to have
np to second Volterra kernal which is actually
realized as shown in Fig.2, where g(1) is the im-
pulse response of the linear part of the systemn.
Then the output y(7) can be written as

= [Tttt —mydn + ([ grute = nydn )?
JO 0
= /:)g(rl)u(i, — 7y )d7y
+‘/(: /0 vy(r. Yg(ra)u(l = r)u(l — 72)dridry
(7)
Therefore Volterra kernals are as follows in this
case.
gi(71) = g(71)
g2(11,72) = g(11)g(72) (8)
When we use the M-sequence having the char-
acteristic polynomial of f(») = 36073(in octal
notation, 13 degree), £;'s in Eq.{4) are

kl = 73, ]\‘2 = 75
Therefore
d)uy(T) = g(7) + g2(7 — 73.

-
i
=1
o
~

+ga(7 ~ 146, 7 — 150) + - -

Fig. 3 shows an example of the simulation re-
sults, when the lear part of the system is of
second-order with ¢ = 0.5, w, = 1.0, where ( is
the diunping ratio and w,, is the natural angular
frequency of the second order system. The lin-
ear impulse response is clearly seen for 7 < 50,
and the 2ud Volterra kernal go(7 — 73,7 — 75)
is obtained from 50 < 7 < 100 and also go(7 —
146, 7 — 150) is obtained {rom 100 < 7 < 200.

In Fig.3 , O mndicate the sinmlation result and
solid line shows the theoretical result, shiowing
a‘good agreement with cach other.

4 Measurement of 3rd Volterra Kernal

Let the system to be identified bhe a nonlinear
systeur having the first and third Volterra ker-
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nal. This system is realized as shown in Fig.4.
The output y(t) is written as follows

y(l) = /m J(r)u(t = r)dr + {/

-

(Nu(l — r)dr}®

(r)u(t — 7)dr

A A

xu(t — r)uf{t — r2)u(t — 13) dry drydry

g{r2)9(73)

(10)
Tho;efore Volterra kernals are
gi(m) = g(m1)
a3(11, 79, 73) = g(11)9(72)9(73) (11)

Fig.5 shows an example of the result of simu-
lation when the systein is composed of the first
and third Volterra kernal.

5 Selection of M-sequence

We can assume k; < ki without losing gener-
ality. Then in order to obtain gi{(m, 7o, -+, 7)
from Eq. (6), each k! satisfying Eq.(4) must be
sulficiently apart from each other.
Here that Volterra
gi(71, 72, + -, 73) is small enongh when 7y, 79, -+ >
50A¢, where At is the time increment. Then
it is enough that we chioose those M-scequences

we  assuine kernal

whose k's are apart more than 50AL.

We have scarched all known primitive polyno-
mials over GI'(2) np to 34 degrees( total G178
polyuomials) to find those M-sequences for b} <
300.

Table 1 shows some of the obtained charac-
teristic polynomials suitable for mcasurement
of second Volferra kernal.
polynomials f(u) of M-sequence are shown in
Table 1 in octal notation with (ky, ko)—d, where
d is' the distance of k¥ to the ncarest neigh-
bour kf. For example, 53233(127,128)-109 in
Table 1 means f{x) = 53233 in octal notation,
ky = 127, ky = 128 and the nearest k7 is apart
by 109.
ko — ky. The usable characteristic polynomials
are obtained for df up to 99, only the fizst 50

being shown in Table 1
*

The characteristic

df in the table indicates the diflerence

in the table denotes that there is no such
peaks in the scarching range of ki* < 300.

We have obtained those M-sequences suitable
for obtaining 2nd Volterra kernal of noulincar

system for df = ky — by up to 99, among which
first 50 are shown in Table 1

In the saince way, the usable characteristic poly-
nomials suitable for obtaining third order Volterra
kernal are scarched and obtained for d1 = kg —
ky,d2 = ky — ky up to 99. Table 2 shows some
of the usable characteristic polynomials for ob-
taining third order Volterra kernal of nonlinear

systein.

6 Conclusion

A new method for obtaining Volterra kernal of
noulinear systemn by use of psendorandom M-
sequence is proposed. A specially chosen M-
sequence is applied to the nonlinear system to
be indentified, and the crosscorrelation function
between the input and the output gives us not
only the lincar imipulse respouse of the lincar
portion of the systew, but also some crosssec-
tious of the Volterra kernal ¢;(7y, 79, - - - 77) along
some 45 degree lines in (77, 79, - - - 73) plane.

Tlhis method for pbtaining Volterra kernal is
sinmlated on the computer for nonlinear sys-
tems having up to second aud third order Volterra
kernals. The results of simnlation show a good
agreement with the theoretical considerations.
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Table 2: Usable characteristic polynomials for 3rd order
Volterra kernal measurement, R means reciplocal.

— 1563 —

Table 1: Usable characteristic polynonials for 2ud order a2 T (5 Tk — d
Volterra kernal measurement (2’1) - 7..;,17(;(}(12(;03] (il 162)*
— 3,1) | R320055(151,153,151)-109
df | f(x){k, ky) — d
W GATR (3,2) | rR335061(198, 199 201) 132
2 | 56463(164,166)-83 (L1) | 772017(56,58,59).62
3 | 71721(97.100). 100 (1,2) | R377645(180,182.181)-92
: 43) | R2T7707(92,93,96)-96
4| 34035(125,120)- 127 (4,
5 2146)2% ’()2 "0 ! (5,0) | 3375030139, 143,144)-69
6 | 373350176, 182) 01 (5.2) | R301021(122,125,127)-60
; '”2“(”4’ 1) (5,3) | R311465(94,96,99)-99
g | 237050133 141" (54) | 316145(170,171,175)-95
9 130155(‘1;)12 iy (6,1) 201607(65,70,71)-71
10| 65513111 121) 102 (6,2) | R263641(112,116.118)-59
11 | 54635(36.97).97 (6.3) | RI2U341((107,110,113)-41
12 1 2661799 111)-111 (6,4) | R330233(127,129,133)
13 ](’,’“,5(3‘(1‘“ x‘)z~4)* (6,5) | 166511(83,81,89)
y 7(;:2)5];105 19)-03 (7,1) | 255505(84,90,91)-90
s ’126111(79 Q’q)j(”" (7,2) | R255267(170175,177)-103
16 | 55103(169.17%).89 (7,3) 247743(102,106,109)*
" ‘;‘4’,),);)50/; 1'1{;){1'1 (7.1) A0123(190.193,197)-36 -
I8 '1';'03(57'(1’45 163)* (7,5) 250641(99,101,106)*
19 15315 33 107)-100 (7,6) 106677(62,63,69)-69
20 Izjmf)gg‘,)’”;;:m (8,1) | 243703(141,148,149)
. 3244'5('1;)6 1"21)_‘12] (8,2) | 772047(116,122,124)-62
29 | 34767125 1471* (8,1) | R210631(H4,59,620-62
23 | 2010121712 (8.1) | 370321(51.55.59)-59
24 | 170277(103.197)% (8,5) | 206603(137,140.115)-100
o5 | 610 (8,6) | R332017(195,197,203)"
é; ?31?(?3 }(1)1) :‘l]] (8,7) | 276277(113,114 |21) 60
57 :m"é%m’)“; (0.0) | 153731(58,66.67)-5
e ”m/“(m 160)-80 (9.2) | A011200131,138, M())*
29 | 31047095 124’) By (9.3) | R217527(76,82,85)-85
30 | 20761(95.125) 116 (94) | R2U377(185,190,194)- 106
31 | 23231(50.90).90 (9.5) | RIASA27(37 41,46)-16
32 | 16305(31, m) I3 (9,6) | R346173(93,96,102)-19
43 | 77031(80113)-113 (9,7) | RI3T613(119,151.158)-59
, (9.8) | 356057(188,189,197)-93
31| 60253(107, M') (10.1) | 125323 179,155,189)-63
35 | 74531(64,99)-99 '
36 | 7T7057(77,113)-113 (10.2) | R302021(75,83,85)-84
37| 141445(116.153)" (10,3) | 232561(91,101.104)*
38 | 174467(63,001). 101 (10, | 236511(188,194,198)-99
29 | 65277(58.97).07 (10.5) | 663013(68.73,75)-78
10 | 32751(69109)- 109 (10.6) | k31 M(»:(I‘N 192,198).99
1| 41625(59,100)-100 (10.7) 4 340115 E §3,90)-11
o | Torganran 1amy (1 (10,8) | 271317(195,197,205)*
12 | 126133(93.135)- 135 (10,9) | RI03657(186,187,196)-53
43 | 162241(79,022)-122 :
A4 | BIZIB(11L155)* (11.1) | R261455(81,91,92)-80
15 | 60057(81,126) 103 (11.2) | R125103(98,107,109)-99
16 | 101507(90,136)-68 ‘::*'I‘) ,“;F:[;]:(:Tf’:?:;‘i”I‘)*“”
A7 | 61617(62.109)- 109 (LLA) - S E0THELA50,151)
18 | 150225(79 127 127 (11.5) | 332707(188,194,100) ¢
i Sy (11,6) | 203727( 111 116.152) 13
49 | 110501(58,107)-107
50 | 103035(121,171)* (1,7) | 105413(101,105.112)-53
: ) (11,8) | 375715(165.168.176)- 122
(F1.9) | 225073(160,162.171)-13
O1,00) | 610635(116,117,127)*




Fig.1 Crosssections of Volterra kernal are
obtained.
Dxy(T) Degree= 13 fx= 36073
HI= 73 Ki=T7% wh | Z= ©8.33 D1=90.3
9(7)
d /

ga(T1 — 73,72 ~ 75)

u(t)—= (1) 7 4 2% ()

Fig.2 A nonlinear system with 2ud order
Volterra kernal.

z(1)

u(t)—- = y(t)

g(t) 24 23

Fig.4 A nounlincar system with 3rd order
Volterra kernal.

gg(‘rl - ]_46,72 - 150)

140 188

Fig.3 Simulation result on 2ud order Volterra kernal measurement

dxylT) Degree= 16 [Ix= 313751
- Hl= 132 Kl= 133 Hi= 134 wn=1.22= 0.3 Df-0.25
 g(r) g3(m — 132,79 — 133, 75 — 134)
¢ /

o

"
\j (] ] ) 108 122 149 160 150 .o
o

Fig.5 Simulation result on 3rd order Volterra kernal measurement
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