'93 KACC (1993.10.20~22)

Adaptive Control of Gas Metal Arc Welding Process

Jae-Bok Song* and David E. Hardi**
* . . .
Department of Mechanical Engineering. Korea University, Seoul, KOREA
* . . .
* Department of Mechanical Engineering, MIT, Cambridge, MA 02139, USA

Abstract

Since the welding process is complex and highly nonlinear,
it is very difficult to accurately model the process for real-
time control. In this paper, a discrete-time transfer function
matrix model for gas metal arc welding process is proposed.
Although this linearized model is valid only around the
operating point of inierest, the adaptation mechanism
employed in the control system render this model useful over
a wide operating range. A multivariable one-step-ahead
adaptive control strategy combined with a recursive least-
squares method for on-line  parameter estimation is
implemented in order to achieve the desired weld bead
geometries. Command following and disturbance rejection
properties of the adaptive control system for both SISO and
MIMO cases are investigated by simulation and experiment.

1. Introduction

Welding processes have been developed into an automated
operation over the past decades. Although control systems for
the welding torch motion (e.g., joint tracking and robotic
welding) are now commercially available, process control
systems have not been fully developed for many reasons such
as complexity of the welding process and lack of reliable
sensors. However, coftrol of the welding process itself is also
very important so that full automation of the process and,
possibly, unmanned operation may be achieved.

Gas Metal Arc Welding (GMAW) is a complex, multi-
encrgy domain process that is essential to many types of manu-
facturing. Weld quality features such as final metallurgy and
joint mechanics are typically not measurable on-line for con-
trol; thus, some indirect way of controlling the weld quality is
necessary. A comprehensive approach to in-process control of
welding includes both geometric features of the bead (such as
the cross section features width, depth and height) and thermal
characteristics (such as the heat-affected zone width and
cooling rate). The definitions of these features are illustrated
inFig. 1.

The nonlinearity of welding has been confirmed by several
process modeling investigations. For Gas Tungsten Arc
Welding (GTAW) process, Hardt et al. [1] developed a simple
non-stationary  first-order model, which showed both
analytically and experimentally that the process parameters
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Fig. 1 Cross-section of weldment and definitions of weld
bead geometries

were dependent both on the operating point of the process and
on the boundary conditions. A transfer function matrix model
for GMAW relating wire feedrate and travel speed to bead
geometries, bead width and height was developed in [2]. In
this case the nonlinearity was explicitly related to the inputs.

Recently, some researchers [3] modeled the welding
process based on the artificial neural network (ANN). If
enough training data are given, the ANN model can capture
the process characteristics including nonlinearities and
parameter couplings over large operating ranges. However,
the ANN model requires a large amount of I/O data to
accurately train the network and cannot describe the physics of
the process.

Even though much research has been done for the modeling
and analysis of welding processes, research on real-time
welding control is a relatively recent development, mainly
because of lack of reliable sensors for feedback control. Most
of the early research was based on single-input, single-output
nonadaptive control schemes. Recently, with the development
of robust control algorithm, computers and sensors, more so-
phisticated control schemes (e.g., adaptive control, artificial
neural network [3, 4], fuzzy control [5]) have been employed
to improve performance of the welding control system

One of the first adaptive control applications to welding
was demonstrated in [6]. A Model Reference Adaptive
Control (MRAC) scheme was used to regulate the back bead
temperature of GMAW using travel speed as an input.
Recently, an adaptive control systems for the full penetration
GTAW problem was developed in [7}. In this case, both
MRAC and Self Tuning Control (STC) were shown to be very
effective in responding to both uncertain nominal parameters
and severe parameter disturbances. The MIMO case of
thermal control by using a deadbeat adaptive algorithm with
parameter adjustment based on a projection algorithm for
parameter identification was addressed in {8]). Hale and Hardt
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[9] dealt with the nonlinearities of GMAW geometry control
problem using a scheduled gain approach.

In this research, the transfer function matrix model for
GMAW process addressed in [2] is further extended to include
more accurate dynamic characteristics. In order to consider
nonlinear and multivariable nature of the process, an adaptive
control system with on-line parameter estimation is developed
and tested for both SISO and MIMO cases. Some guidelines
for designing this adaptive control system are aiso suggested.

2. Process Modeling for Control

Among many possible outputs shown in Fig. 1, bead
geometries, width and depth, are chosen as process cutputs in
this research. Because the process inputs must be able to
regulate the chosen outputs, wire feedrate (/) and travel speed
of the torch (v) (i.e, torch velacity) are selected as inputs.
Even though these two inputs have similar effects on the
outputs and cause strong coupling of I/0 pairs, they are
considered the best choices under the current configuration of
GMAW setup.  Note that the wire feedrate regulates the
welding current, and thus the heat input into the weld.
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Fig. 2 Schematic for welding setup and measurement devices

In order to investigate the dynamics of the process, a series
of open-loop welding experiments were performed using the
welding setup in Fig. 2. The welding table with the workpiece
clamped to it was set up to move in the welding direction,
while the torch and measurement devices remain stationary.
The experiments were conducted based on a bead-on-plate
butt welding. The primary metals were low carbon steels
which are 6.35 mm (1/4 in) thick. An Ar + 2% oxygen gas
mixture; was used as a shielding gas for this experiment.

The weld bead depth, which is the key geometric attribute
of a major class of welds, is very difficult to directly measure,
but a robust method to estimate the depth using temperature
measurement was developed in [10, 11]. The bead width is
measured on-line by real-time video image analysis [11].

Extensive open-loop step tests have shown that the GMAW
process can be adequately modeled by the second-order
dynamics {2].  Since the process is nonlinear, a locally
linearized process model around the operating point is
obtained. Based on these observations, the foliowing discrete-
time second-order transfer function matrix (TFM) model has
been developed:

(b1 +br; ZA]) 27 (h13+bl4 Z_l) 2~
{Y1(Z)}: l+ay z7V +apz7?
ya(z) (bn +”122-‘) 27
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l+ay z7 +ay 272 [[u(2)
(b23 +by, z“‘) 27922 | uy(2)

1+ay z7 +ay 272

O]

where y,(z) and y,(z) are the width and depth, # (z) and u,(z)
are the wire feedrate (f) and inverse travel speed or inverse
velocity (v1), and dj; is the time delay between the ith output
and jth input. Note that the inverse travel speed is used
instead of the travel speed in Eqn (1). This is because the
leading coeflicients b3 and b,; corresponding to w,(z) will
have positive sign with the inverse travel speed as input; both
width and depth increase as the inverse travel speed increases
(i.e., the travel speed decreases).

It is noted that each output has been modeled to have
common denominator dynamics, two process inputs have
similar effects on each output from a physical point of view
because both inputs are regulating the outputs through the
amount of the heat input to the weldment. This common
dynamics also simplifies the subsequent analysis and design; if
each /O pair had different second-order dynamics, the
resulting transfer function matrix would include a fourth-order
polynomial.

Although the dynamics are assumed to be common to each
output, the gains ('s) are modeled to be different for each /O
pait in Eqn (1). . Another important point is that each
numerator polynomial should have at least two coefficients in
order to compensate for a fractional time delay which cannot
be represented by z-di, where d;is an integer.

3. Adaptive Contro! Algorithm

Since welding is inherently a nonlinear, simple nonadaptive
feedback control schemes cannot be successfully applied.
Nonlinearities observed in the process significantly change the
process parameters (a's and A's) depending on the operating
points. These factors necessitate the use of adaptation (e.g.,
on-line parameter estimation) in the controller design.

One of multivariable adaptive control algorithms developed
for discrete-time system [12, 13] is a multivariable ene-step-
ahead adaptive control algorithm (also referred to deadbeat
adaptive algorithm in some literature). This algorithm is
applicable to discrete-time multi-input, muiti-output (MIMO)
deterministic linear systems. It has a simple structure but
guarantees global and asymptotical stability of an output
tracking system with bounded input sequences. Since it is
based on a transfer function model, it requires only information
on process inputs and outputs for feedback without an explicit
state space description. This feature is suitable for control of
the welding process because some of the state variables in the
state-space representation are not physical quantities and, thus,
can only be observed at best.

3.1-Generalized One-Step-Ahead Control

A general MIMO linear discrete-time system with m inputs
and m outputs can be described by

Alg™") y(k) = B(g~ ) u(k) ()

where y(k) and u(k) are output and control vectors,
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respectively. In general, there exist time delays between I/O
pairs (i.e., z°di in Eqn (1)). Since each delay is generally
different from each other, a new output-dependent delay is
defined as follows:

d; = min d;; i=1-m 3)

1< j<m

If we define D(g) = diag{q91, ..., g¢%m] as a delay matrix, then
B(q-1) of Eqn (2) can be represented as

B(g") =D'(q)(By+B, g +-) =D (9)BYg) (4)

Note that B, is the matrix consisting of the leading
coeflicients. With this output-dependent delay, the predictor
form can be given by

¥y = alg™") y(k) + B(g~") u(h) (%)
where (k) is the future output and
a(@g N=ag+a; gt toy gl

B(@)=Bg+Prg + - =By +q7' B¢ (6)

This predictor form enables the future outputs to be
expressed in terms of the outputs and inputs up to time k (i.e,,
current time),

Consider the following cost function

Tk = [0 - 3 * ()T [7(k) - ¥ * (B} +

7
{uCk) — u(k ~ D} R {u(k)~ u(k - 1) @

where R is a control weighting matrix which is positive
definite. The first term in Eqn (7) represents the cost due to
tracking errors, while the second term represents the cost due
to large control signals. With the first term alone, the control
system can achieve the desired output in just one step, but it
may produce an excessively large control signal and sometimes
cause instability. In addition, in the subsequent closed-loop
control system with the first term alone, the closed-loop poles
tend to cancel process zeros and thus it cannot be used for
nonminimum-phase process. The matrix R in the second term
has been introduced to overcome these problems [13].
Minimizing the cost function with respect to the_control u(k)
yields the following generalized one-step-ahead control law:

u(k) = [Bo? + R] ™ B {7* (k) ~a(g™) y(k)
-B'(g7") u(k - )} + R u(k - 1)} ®)

where y+(k) is the desired future output vector, which is

assumed to be known in advance and bounded for all time. On
the other hand, the closed-loop control system can be derived
from the cost function as follows:

(B + a-g)B B R
B'(q7) Alg™)] ¥(k) = B¢ T (K) o
where B'(q'!) is defined in Eqn (4).

3.2 Parameter Estimation

As mentioned earlier, the paramelers of the welding process
are changing depending ou both the operating conditions and
the past thermal history. Thus, the parameters cannot be
determined accurately before the welding process and on-line
parameter estimation is required to achieve consistent control.

Among numerous on-line parameter estimation methods, a
recursive least-squares (RLS) algorithm was selected. The
forgetting factor was used in the RLS method. With this
forgetting factor, the RLS method works more effectively for
the system with time-varying parameters by discarding the old
data. On the other hand, the data collected from the
experiments are usually contaminated by high frequency noise.
Low pass filtering of the data prior to parameter estimation
improves performance since the welding process is inherently
slow and thus the low frequency portion is more important.
The same low pass filters must be used for both input and
output signals.

3.3 Multivariable One-step-Ahead Adaptive Control

The multivariable generalized one-step-ahead control law
combined with the recursive least-squares parameter
estimation scheme constitutes the multivariable generalized
one-step-ahead adaptive control algorithm. The convergence
and stability properties were proved in [12].
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Fig. 3 Multivariable adaptive control (Direct approach)

In this paper, only direct approach where the controller
parameters are estimated directly by reparameterizing the
process model in advance is considered. Figure 3 shows the
block diagram for the direct approach, where the parameter
estimator identifies the controller parameters from the /O data
every sampling period. A supervisory loop primarily monitors
the parameter estimator, improves its performance and pre-
vents its malfunction.

3.4 Guidelines for Control Design

Since the closed-loop poles tend to cancel the process zeros
in the one-step-ahead (OSA) control scheme without control
weights, the locations of the transmission zeros are very
important to the stability of the control system in that case.
This is no longer true in the generalized OSA control law with
control weights where the closed-loop poles can be chosen
arbitrarily to some extent, but a priori information on the
transmission zeros is still important to the controlier design
because the values of the control weighting factors may be
determined by the transmission zeros. In general, the
following guidelines can be used in determining control
weighting factors.

a) no or small control weights for well-damped zeros (i.e.,

- zeros well inside the unit circle),

b) relatively large control weights for poorly-damped zeros

(i.e., zeros inside but near the unit circle),

Another important point in determining control weights is
their effect on the closed-loop poles. As shown in the left
hand side of Egn (9), the closed-loop poles depend on the
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choice of the control weighting matrix R; therefore, the
closed-loop stability should be the first consideration when
selecting R.

Since the system under consideration is square (i.e., the
same number of inputs and outputs), the transmission zeros
and closed-loop poles can be computed by taking the
determinant of each side of Eqn (9); the transmission zeros are
found as the roots of detB'(g-!) = 0 and the closed-loop poles
are computed as the roots of det[B'(¢-1) + ... A(g-})] = 0.

However, for the complex system, selecting R analytically
is often difficult because of computaticnal complexity.
Therefore, proper values of the control weighting factors are
often found by simulation or experiment by trial and error.

4. Control Experiments

In order to evaluate the performance of the adaptive
control system, a series of closed-loop control experiments
were conducted. Both SISO and MIMO control systems are
developed and implementcd.

4.1 SISO Cases

There are four combinations of the input-output pairs:
feedrate-width, feedrate-depth, travel speed-width, and travel
speed-depth.  Although all four combinations are equally
important since each output must be controllable from each
input in a multivariable control system, only a few results are
shown here.

Choice of Control Weighting Iactors: The importance of
the control weighting factor to the generalized one-step-ahead
{OSA) adaptive control was mentioned previously and is
experimentally verified in Fig. 4. Figure 4(a) plots the depth
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Fig. 4 Depth responses of OSA adaptive controller for (a)
no control weight, and (b) control weight = 0.5 (Input;
feedrate (cmy/s), Output; depth (mm), T5=0.5 sec)

responses when the process is subjected to step changes in
reference command without a control weight. The feedrate
was used as the controf input, while the travel speed was kept
constant. When no control weight was given, the response

shows a large overshoot and a undershoot immediately after
step changes in a reference command. In the absence of
control weight, the OSA contro! algorithm tries to achieve the
desired output in a single step, which leads to a large variation
in the control signal and an actuator saturation. In an attempt
to reduce this large control effort, the control weighting factor
of 0.5 was introduced as shown in Fig. 4(b), inputs and
outputs are normalized so that they are of about the same
magnitude (typically, =1). The overshoot observed in Fig.
4(a) is significantly reduced and the output maintains good
command-following. Additionally, the control signal shows a
reasonable variation.

Command  Following: The command following
performance by the adaptive controller is compared to two
nonadaptive controllers in Fig. 5 for feedrate-width pair.
Figure 5(b) shows the response of the digital PI controller in
the following form:

-z}

u(z) = [Kp + K -]e(z) (10)

where K, and K; are the proportional and integral gains.
respectively, and e(z) is the error signal defined as y*(z) - w2).
It is observed that the width response cannot follow the step
change in reference command quickly enough, though the
steady-state performance is relatively good.  This slow
response is because the P controller is operated based on the
error signal between the reference command and the measured
output. Since there are time delays of two samples (delay of |
scc) and a computational delay of one sample in the width
control, the control action is always delayed by at least three
samples. This delay can be slightly reduced by adjusting the
gains (e.g., increasing the proportional gain Kp), but at the
expense of a possible overshoot. When compared to the PI
controller, the OSA adaptive controller shows much faster
time response (Fig. 5(a)). This is because the OSA adaptive
controller is based not on the error signal but on the predictor
form which accounts for the time delays including a
computational delay. In the width control case involving three
samples of time delay, for example, the control signal at time
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Fig. 5 Comparison of OSA adaptive controller to
nonadaptive controllers (a) OSA adaptive controller, (b) PI
controller, and (c) nonadaptive OSA controller (Input;
feedrate (cnmVsec), Output; width (mm), Travel speed = 7
mnvsec, Ts= 05 sec)
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kTs is commanded to track the reference input at time
(k + 3) Ty, thus leading to good tracking for the step change.

Figure 5(c) shows the performance of the nonadaptive
generalized OSA controller. The parameters used for the
controller were obtained from the operating condition
corresponding to the portions before £ = 2 sec and after 1 =22
sec in Fig. 5(c). As a resuit, tracking performance for the
portion between 7 = 2 and 1 = 22 sec was very poor. This
indicates that the performance of the OSA controller depends
strongly upon the accuracy of the parameters.

Disturbance Rejection: In arc welding, various forms of
disturbances may exist (e.g., thickness change, change of
material properties, parameter drifis of the welding machines,
etc.). The disturbances need to be rejected in most cases since
they adversely affect the performance of control systems.
Figure 6 shows the disturbance rejection performance of the
OSA adaptive controller for travel speed-width pair. Step
changes in the feedrate were used 1s the disturbance. At the
time = § sec, the feedrate decreases from 22 to 18 cm/sec,
thus resulting in a quick decrease in the width output. The
control parameters then adapt to the new parameters; the
controller decreases the travel speed to compensate for the
decreased width. A similar trend is observed in the
disturbance introduced at time # = 25 sec.
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Fig. 6 Disturbance rejection of OSA adaptive controller
(Input; travel speed (mm/s), Output; width (mm),
Disturbance, feedrate)

4.2 MIMO Cases

The same control experiments as in the SISO case were
extended to the two-input, two-output case. The control
weighting factors are also important as in the SISO case. With
no control weights, either unstable or highly oscillatory
behavior was observed. In addition to the proper magnitudes
of the: control weights, the proper balance between two
control weights are important as well in the MIMO case.
Since the control weight tends to decrease the control signal,
excessively large control weight reduces the corresponding
control signal more than the other; as a result, the whole
process is dominated by the other control signal, which is
undesirable. In most cases, it is desirable to achieve equal
participation from both control inputs, so that a good control
performance may be accomplished. The proper level and
balance can be found either by simulation or by experiment.

Command Following: Figure 7 shows the output responses
and control inputs of direct adaptive controller. With proper
control weights, both control signals show reasonable
variations. Both output responses are shown to follow the
reference commands reasonably well even with the step

changes in the commands.
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Fig. 7 Output responses and control inputs of multi-
variable direct OSA adaptive controller

Control Range: In the MIMO case, the control range is
also an important issue ({2, 9]). In gas metal arc welding
process, two outputs (i.e., width and depth) are highly coupled
partly because two inputs (i.e., feedrate and travel speed) have
similar effects on each output. Therefore, there is a limit to
the range which combinations of the two control inputs can
achieve. For example, an increase in the width while
decreasing or maintaining a constant depth cannot be attained
with any combination of the control inputs. No control
algorithm can overcome this inherent problem since the
limitations are due to the welding process and machines used.
Therefore, the desired bead geometries must be in the
achievable control range. The adaptive controller cannot
provide good command following performance when desired
bead geometries deviate greatly from the achievable control
range.

Disturbance Rejection: The output coupling may make the
disturbance rejection difficult. If the disturbance affects one
output much more than the other, then it is difficult to reject
this disturbance. For example, a certain disturbance tends to
increase the width with no change in the depth. Then, the
control signals must decrease the width while maintaining the
depth to achieve the desired bead geometries. As mentioned
before, such a combination of the control inputs are hard to
find because of the strong /O coupling. However, if the
disturbance affects both outputs and they are in the achievable
control range, then the adaptive controller can reject it by
adapting to new process parameters as in the SISO case.

5. Conclusions

It is, therefore, very difficult to obtain the process model
accurately in advance and on-line parameter estimation and
adaptive control algorithm are required. A one-step-ahead
adaptive control strategy combined with a recursive least-
squares method has been investigated. Command following
and disturbance rejection properties of the adaptive control
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system for both SISO and MIMO cases are investigated by
simulations and experiments. The adaptive control system
shows reasonable performance on command following for
both SISO and MIMO cases. This system also shows good
disturbance rejection in the SISO case, but is shown to be of
limited success in the MIMO case due to inherent lack of
output decoupling in the GMAW process. Process
modification to decouple the process outputs to a great extent
is underway ]

Even though a truly independent control of the outputs 1s
difficult to implement due to a strong output coupling
inherently existing in the process, a control system for
simultaneous control of bead width and depth was successfully
implemented in this paper.
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