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Abstract

Most of the control problems for the redundant manipulators
use the pseudo-inverse contrel, that is, the redundancy is re-
solved by the pseudo-inverse of the Jacobian matrix and then
the controller is designed bhased on this resolution. However,
this pseudo-inverse control has some problems when the re-
dundant robot repeats the cyclic tasks. This is because the
pseudo-inverse resolution is a local solution that generates the
different configurations of the robot arm for the same hand
position. Therefore it is necessary to find the globa! solution
that maintains the optimal configuration of the robot for the
repetitive tasks.

In this paper, we want to propose a redundancy resolution
method by the optimal theory that uses the calculus of vari-
ation. The problem formulations are: first to convert the op-
timal resolution problem to an optimal control problem and
then to resolve the redundancy using the necessary conditions

of optimal control.

[. Introduction

The redundant manipulators which have more degree-of-
freedoms than they need for the specified tasks are the keys
of dcxter;ily. Due to the extra degree-of-freedoms, they do
perform the multi-purpose tasks, For example, they can track
the desired trajectory while avoiding the obstacles.

In general, the kinematics and the inverse kinematics of
the rgbots are necessary to control them. For the redundant
manipulators this inverse kinematics problems become very
complicated so that a lot of researches on the redundant ro-
bots concentrated on resolving the inverse kinematics.  Al-
most all of the past researches on resolution of inverse kine-
matics have used the pscudo-inverse of the Jacobian matrix
and this pseudo-inverse resolution has succeeded in many

applications. However for the cyclic tasks, this resolution

does not have the closed results, that is, it generates the dif-
ferent configurations for the same end-effector position and
orientation.  This property is because the pseudo-inverse
resolution is a kind of local solution of the inverse kinematics
(4}

Therefore it is necessary to find the global solution that
maintains the optimal configuration of the robot for the re-
petitive tasks. Some research eflorts have been directed for
the global redundancy resolution of the robot manipulators,
For example, Nakamura and Hanafusa [9],[10] used Pontry-
agin's maximum principle, and Kazerounian and Wang [2],
Martin, Baillieul and Hollerbach 8], and Suh and Hollerbach
[11] resolved the redundancy by using the calculus of vari-
ation. Won, Choi and Chung [12},[13] also investigated the
optimal resolution using the variation approach.

In this paper, we deal the optimal resolution problemn as an
optimal control problem as proposed by Nakamura and
Hanalusa [10]. The difference between ours and their ap-
proach is that they used Pontryagin's maximum principle but
we do not use this principle. As known generally, Pontry-
agin's principle is the extension of the calculus of variation so
that it can be applied when the admissible control input is
restricted. However in their problem formulation, there are
no constraints for the input. In other words, this problem can
be solved by the conventional variation approach

Thus the approach in this paper is the one using the calcu-
lus of variation for the optimal control problems. The prob-
lem formulations are: first to convert the optimal resolution
problent to an optimal control problem and to resolve the re-
dundancy using the necessary conditions of eptimal control.

As listed in the past researches, the variation approach has
also done in some papers, but they have not used the optimal
control technique. One more points to be noted is that their
resolution is acceleration level, defined by the second order

differential equation, but ours is resolved in velocity level and
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defined by two first order differential equations. Since we use
the necessary conditions of the optimal control problem, this
redundancy resolution problem becomes two ordinary differ-
ential equations that the boundary values are given at the
each end of trajectory. The effect of boundary conditions for
this resolution is to be considered.

In the simulation, it can be verified that the cyclic motion
becomes conservative and the drifi-away of the motion is
avoided if we use the proposed redundancy resolving

method

II. Formulations for Optimal Redundancy
Resolution

In this section, we briefly review the past formulations and
solutions, and we propose a new formation that considers the

optimal resolution as an optimal control problem.

A. Variation Approaches

Many researchers have directed their efforts to solve the op-
timal resolution problem by the calculus of variation
[2],[81,[10L,[11],{12},[13]. Their formulation first begin by

defining the performance index
[ G(andgrye )

subject to the kinematic constraints,
x(ry= f(q(1)). (2)
The function G(q,q,r) might be selected differently accord-

ing to the designer's needs, except to note that one reasonable

choice in such a problem is
5 ! W : a2
Glag:0 = 24'W(q.0q+p(q) &)

where W(q,r) is a nonsingular symmetric matrix whose ele-
ments reflect the relative weight of each joint axis and the
function p(q) denotes the configuration of the redundant ro-
bot, for example, the manipulability measure [11] or the dis-
tance to some obstacles.

The necessary conditions for optimal trajectories that
minimize the integral criterion are now developed. First the

following Lagrangian is introduced.
L(qyds M) = Ggy gy )+ AR = (). (4)
Then the necessary conditions for optimality are given by the

Euler-Lagrange equations

AL_dIL_,, )
dq dt Jg

and the kinematic constraints are

(1) = [(g(1)) = 0. (©)
After some mathematical manipulation [8], the resolution be-
comes

G= S (X I T = Sy WU+ LB+ dpfdg) ()

where ./, is the weighted pseudo inverse of the Jacobian

matrix J/(q) = df [dq, given by

Jo = WIS (8)

for nonsingular JW' J*
Using the resolution of (7), the redundancy is resolved at

the acceleration level.

B. Approach using Pontryagin's Mininman Principle

Nakamura and Hanafusa used Pontryagin's maximum princi-
ple [9],[10}). To formulate the optimal control problem, dif-
ferentiation of (2) with respect to time generates the follow-

ing linear equation is derived:
(1) = J(@)(0). ©)
Suppose that ¢(¢) satisfying (9) exists, then (3) can be writ-
ten by
G=0 %4 (=T D (10)

where .J* is the pseudo inverse of Jacobian matrix and w is n-
dimensional arbitrary vector.

Equation (10) can be regarded as a dynamic system by
considering g as a state vector and # as an input vector with

minimizing the following cost function

g=J'x+(I-J"Nu=g(qun) (11a)
[ Gitavg,nyar (11b)

where G,(q,q,1) = +4'¢ + p(q). Thus equation (11) consists
an ordinary optimal control problem so that Pontryagin's
principle can be applied.

According to the Pontryagin's principle, define the Hamil-
tonian as follows:

H(q,q,A,0) = G (q,4,1) + A'g(q,u,1). (12)

For the function G,(g,¢,/), the Hamiltonian becomes

H=L4'¢+p(q)+AXg(q,u,r1)
=1 E+A)V(g+ ) -F XA+ p(q)

In (13), the second and third terms of the right-hand side

(13)

have no relation to #, since w is included only in g. Therefore
the input # minimizing the first term of (13} also minimizes

the Hamiltonian. Such # is as follows:

— 235 —



u=-(I-J' D) [ %+A)

14
== -J'" DA a9

where the properties of pseudo inverse (/- J*J)' =1-J'J
and (/ -J'J)"J*" =0 are used.
Thus the optimal trajectory q(¢) for the cost function of

(11b) is governed by the following two differential equations.
g = g(q,u,1) (15)
A=~(3g/9q) (g + 1)~ (dp/Iq) (16)

C. Optimal Control Approach -- Proposed

We propose an optimal control approach for the optimal re-
dundancy resolution. The problem formulation is same as in
the Section 2-B. That is, the systems (11), and the Hamilto-
nian (12) is considered, but we do not use the Pontryagin's
principle. Alternately the optimal trajectory is governed by
the following three necesséry conditions.

. oH

=2 17
7=73 (17a)
: oH
A== 17b

2 (17b)

oH
— =0, 17
du (179)

The first and second condition of (17) yield (15) and (16), re-
spectively. Since the third equation can be written as follows

S (Z)rn

Ou \du (18)
=(I-JUy[si+(I~JNu+A]=0
the optimal ¥ minimizing the Hamiltonian becomes
u=—(I-JI)U-J'NA=-(I-J DA (19)

Comparing (19) with.(M), we can see that the proposed
approach yields the same results as those of [10]. This is due
to the fact that Pontryagin's minimum principle generates the
same result as the ordinary optimal control problem when
there exist no constraints on the control input or the state
values.

III. Numerical Example

We consider a planar 3-link redundant manipulator [Fig. 1].
The length of each link is [I = 0.5111,[2 = O.4m,ﬂ, =0.3m,

respectively. Now we repeat the formulation in Section 2-C

Fig. 1. A 3-dof redundant robot

for this robot.

A. Formulation for an Optimal Conirol Problem
The system and the cost function in (11) are rewritten here.

System:
qg=J'x+I~-J'Du=g(q,un (20a)

Cost function:
["1dq (20b)

At this stage, the configuration function p(-) in (3) of the ro-
bot arm is not considered. The above cost function is related
to the joint kinetic energy.

Then the Hamiltonian becomes:

H=L1qqg+Aglqun=%+g'g+Ag @n

and the necessary conditions are

q=g(q,u,1) (22a)

_iz[ﬁé] A+ g) (22b)
Jdq

w=~(-J"J)A (22¢)

To solve the above nonlinear ordinary differential equations,
the boundary conditions must be given. For the robot ma-
nipulator to have the conservative motion, the initial and the

final conditions are to be given and are equal, i.e.,
q{ty) = gy, and 40/ )= q, (23)
but the conditions of A are free at both ends so that
At M) = free. (24)

Alfler inserting » in (22¢) into (22a) and (22b), we get the
following two nonlinear first order ordinary boundary value

equation.

g=g(q.-(/-J"NH)Art) (25a)
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’

—i:(—a—g)(l+g(q,—(I—J‘./)A,t)) (26b)
dq

The two equations in (25) are nonlinear so that it can not be
solved by a closed-form solution. Therefore a numerical al-
gorithin to solve the nonlinear ordinary boundary value dif-

ferential equation must be considered.

B. Numerical Solution - Steepest Descent Algorithm [6]
The procedure used to solve optimal control problems is the
method of steepest descent which is
1. Select discrete approximations to the nominal control
history u°(1),¢ €lt, ,tj]. and store this in the memory
of the digital computer. This can be done, for exam-
ple, by subdividing the interval {61, into N subin-
tervals and considering the control u’(t) as being

piecewise-continuous during each of these subinter-

vals; 1.e.,

wW@y=u'(t,), tel,r,,), k=01, ,N-]

2. Using the nominal control history u’(f), integrate this

system equation with g{¢,) = q,, and store the re-

sulting state trajectory ¢'(¢, ).

q't) = j[J‘,ic + (I =7 ())de

3. Calculate }.‘(!/) by substituting q'(r/) from step 2
into (25b). Using this value of }J(r/) as the “initial
condition" and the stored q"(l‘) in step 2, backward

integrate (25b), evaluate 9H'(1,)/Ju and store this

function.
4. Jf “%H* <y where y is a positive constant and
U
iz i i
du du du

fo

terminate the iterative procedure, and output the state
and control. If the stopping criterion is not satisfied,
generate a new piecewise-constant control function
given by

i ' aH'
)y =ur) - 13‘;—(“)

and return to step 2.

Remark: This steepest descent method must know the final
value of /'L"(t/), so the modification is required for fixed end

point problems. One way is to use the pehaliy function ap-

proach. For example, if the desired final state is denoted by

q, we add a term to the perforrmance index of the form
tatr)-q,] Mate))-q,]

where M is a diagonal matrix with large positive elements,

and treat q(r/) as if it were free. Doing this, we find that the

boundary conditions become

A, = M[q(’/)'qf]'
By this technique, fixed and free end point problems can be

treated with the same computer program.

C. Simulation

A circular cyclic motions is considered. »

Fig. 2(a) shows the drift-away of the robot when the re-
dundancy is resolved using the minimum norm pseudo-
inverse solution, that is

q=J'x.
Since the null space of Jacobian matrix is not utilized, the
motion is not conservative. Fig 2(b) shows the joint angle
during the first cycle. It denotes that the initial joint values
are not equal to the final values. These differences cause the
drift motion.

Fig. 3(a) and 3(b) show the joint values and the corre-
sponding control input u, respectively when the proposed
global resolution is used. We see that the initial and final
joint values are equal so that the motion is conservative.

Fig. 4 depicts the performance index evaluation of the

cyclic motion.

Fig. 2(a). Drift-away of the robot
when the local redundancy resolution is used
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Local Redundancy Resolution
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Fig. 2(b). Joint angle during the first cycle
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Fig. 4. Comparison of the evaluation of the performance index

IV. Discussion

We obtained the global resolution in the previous sections,
but there may be a question, "Why the local resolution is not
the global?". The answer can be achieved by analyzing the

cost function.
In the previous numerical example, the cost function was

["4qrqan (26)
Expanding (26) by inserting (20a), we get
[ 4qqde=[ 1P ar
= (
= J”/(

If we use the local resolution of the minimum norm, then

TSP+ 2Ry - T+ = T D )de

75+ - 0 Tl Yar. (27)

¢ = J* xand the cost function becomes

i dr (28)

[/ 4agan=["]

One might think that (28) has smaller value of the cost func-
tion than (27), but that is not true. This is because J* is a
function of g, and ¢ is dependent on u. Therefore the value
of cost function can be made smaller by proper manipulation
of 1. In other words, the null space of Jacobian matrix is
utilized to minimize the cost function.

“ One more thing to discuss is that the good results shown
as in the previous simulations are not guaranteed for all the
possible cases, that is, for some robot arm configurations the
numerical solutions of optimal resolution have never

converged. Why? Have we done mistakes in simulation or
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does the optimal resolution not exist {or each case?

The problem formulation shown in (10) for the optimal
resolution is nonlinear with respect to the control input, #. In
that stage, we didn't verify that there always exists a solution
satisfying the optimal redundancy resolution and whether the
solution is unique or not. 1 think this is closely related to the

nonlinear controllability.

V. Conclusion and Further Study

We obtain a global resolution of redundancy of robot ma-
nipulator by the optimal control approach. The main idea is
that the kinematic resolution problem is considered as an op-
timal control problem and by solving this optimal control
problem, the redundancy is resolved. As a result, in cyclic
motion, the kinematic drift of redundant manipulator is
avoided and the conservative motion is achieved. This is be-
cause the null space of Jacobian matrix is utilized by the nec-
essary conditions of the optimality.

From the necessary conditions of the optimal control
problems, we get two nonlinear ordinary differential equa-
tions with the boundary values. Since these boundary value
problems are nonlinear, they were solved numerically by the
steepest descent method.

For further study, to reduce the computational burden, the
constant optimal control law, v will be considered. The
existence condition check for the optimal resolution could be

a further study.
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