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ABSTRACT

A gain scheduling approach for the suspension control
of a nonlinear MAGLEV System is presented. We show that
this technique is very t'xseful for impn‘)v'mg not only per
formance to the operational disturbances originating aer
odynamic force but also robustness to the uncertainty of
payload. As a scheduling variable, even though the exter
nal disturbance need to be estimated in real time, but
the additive measurement is not required to do it. Some
simulations show that the gain scheduling control system
performs very well comparing with other methods using a
nonlinear feedback linearization or a fixed gain linear

feedback.

1. Introduction

Magnetically Levitated(MAGLEV)System to be considered
is a D.C.electromagnetic suspension(EMS)sys'tem, which is
a highly nonltinear dynamics and open-loop unstable. Diff
erent schemes of ’s.tabination and control of single mag
net levitation system(SMLS) have been widely studied.

"A design method of state feedback control with pole
placement[1,2,5] has been mainly applied on the basis of
the first-order linear approximate model corresponding
to only an operating point.

However this approach has some disadvantages that are
difficult to compensate the design constraints due to no
nlinearity subject to existing various disturbances.

Because the operating point depends on the change of
the suspended mass and external disturbances, the dyn
amics of linear approximate model should be also varied.

Hence some caution is essential for stability and per

formance in detailed design.

In recent years, according to development of digital
computer technology, nonlinear control schems for MAGLEV
have been researched. Sinha[3] suggested a digital imple
mentation of model reference adaptive controller for EMS
and Jin et al.[4] proposed a SMLS controller using nonli
near feedback linearization. They make stability and per
formance of EMS systems improve considerably.

By the way, it is very significant problems that to
what extend the controller designed for EMS has the stif
frness to the change of mass and the performance against
the practical disturbances such as aerodynamic force or
movement of payload etc.

To increase the stiffrness (that is, to compensate the
steady-state error), make the loop gain to be large or
an error integral feedback can be introduced in position
control loop. But the integrator may give rise to aggrav
ate the transient response.

From this point of view, this paper deals with a
design method of gain scheduled controller for SMLS. The
gain scheduling is a nonlinear feedback control of speci
al type i it has a linear regulator whose parameters are
changed as a operating conditions. The model is usually
arranged so that the operating condition is specified by
the values of exogeneous signals or variables, so called
“scheduling variable”.

The main advanLages of the galn scheduling is summ

arized:
(}) the wealth of linear control theories can be appiied
(2) the modern methods of robust deisign for linear syst
ems are available to counter uncertainty in the plant pa
rameters.

(3) the regulator with gain schedulinghas the potential
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to respond rapidly to changing operating conditions.

However, the major difficulty in gain scheduling
design is to find the appropriate scheduling variables
which must reflect the operating conditions,

This is normally done based on the phisics of a system
and on the good insight. Besides since the gain scheduli
ng is inherently local, the overall performance and the
stability are typically evaluated by simulation studies.

While the gain scheduling approach is used widely in
practice[6], it seldom appear in the literature. In this
situation the recent work by Rughl[7,8] is remarkable for
the gain scheduling procedure.

Some simulations show that the proposed gain scheduli

ng controller for SMLS has much better performance than’

other two methods using a nonlinear feedback linearizati

on and a fixed-gain linear feedback,

2. Gain Scheduled Control for SMLS
2.1 Modeling of a SMLS

The modelling of a SMLS is used for reasons that in
control system design for multi-magnet system, it is
possible to express each aegree of freedom as an equival
ent sigle~magnet system, and that the response of system
to external disturbances can be studied using the SMLS.
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Fig. 1. single magnet levitation system.

For the SMLS shown in Fig.1, the vertical motion is de

scribed by the following nonlinear dynamic equation!2?;

‘it) [+ [ i(t) ]2 1 falt)
z = - - — R
4a 2(t) m 4 g (o
- Z(£)i (L) 2z(t)
i(t) = + [ v(t) - Ri(t) ] (2)
z(t) S

“where, z(t) : gap distance between magnet and track
i(t) : current fo electromagnet
fa(t): disturbance input

v(t) : applied voltage to the magnet

R : total resistance of electromagnet circuit
g : gravity
¢ : constant (c = {oNZA), permeability po, number
of turns of coil N, section area of core A.
For simplicity we write eq.(1) and (2) as a nonlinear

state equation

x(t) = flx(t),ult),fa(t)] (3
y(t) = x1(t)

where, xT(t) = [xi(t) x2(t) x3(t)] = [2(t) z(t) i(t))

u(t) = v(t)
Obviously the function f is smooth except for xi = O.
2.2 Design of Gain Scheduling Controller
The overview of gain scheduling approach is as
follows : the first step is to linearize the nonlinear
nodel about several operating points. Then linear design

methods are applied to the linear approximate model at

-each operating point so that the closed-loop system

perforn satisfactorily when operated near the individual
operating condition. The final step is the gain schedul
ing in which the parameters(gains) of linear control law

are changed according to the monitored operating cond

ition. First, the disturbance fa(t) is assumed to be
bounded.
¥ := { fa(t) | fa(t)elfa~ , fa*], t20} (4

where, F is open neighborhood of the origin in R.

At each constant disturbance, fa(t) = Ta, the balance

equation of dynamic model for an operating point (zo,ie)

becomes
F(i ) = c[k]z- + Tq (5)
ov20) = | -] = ng d
vo = R lo

A family of operating point vector x(fa) rewritten in

the state space form is expressed by

X(Ta) = [ 20 0 d4(mg + Fal/c * zo ] 6)
As the operating condition is a function of external
disturbance fd,we select fa(t) as a scheduling variable.

Here it is said to be * output trim condition ”,y(fa)

that for each constant fa of the scheduling variable

fa(t), represents the desired output.
'i'hen the output trim condition of SMLS is yi{fd) = zo.
Now the objective is to design a control law of the form
ult) = K{x(t),fa(t)) (7

where, K(:, ) is a smooth function such that at each fa
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the closed-loop system should have a constant x(fq) and

the linearized closed—loc;p system about each constant T

should be asymptotically stable. In other words, the exi

stance of such a closed-loop constant x(fa) implies that

for Ta € F the smooth function x (Ta) and u(Td) wmust

satisfy the followings

f(x (Ta), u(fa), fa) = 0 (8-a)
WED = KT, Ta) = R zoldlng + Ta)/c (8-b)
y(fa) = 2o (8-c)

Then for each scheduling variable fa € ¥ the corresp
onding linearized closed loop system can be expressed in

the form

Ax(t) = A(FD) - Ax(t) + B - Au(t) + E - Afa(t)

_ (9)
dult) = KiT(Td) - Ax(t) + Kz(Fa) - 4falt)

‘where,
Ax(t) = x(t) - x(fa)
Au(t) = u(t) - u(fa) (10)

Afa(t) = fa(t) - fa

A(fd)=a—f e e
ax | x(fa),u(fa),fd
(] 1 0
2(mg+fa) Je(mg+fa)
- nZo - MZo
0 {4(mg+fa)/c  -2Rzo/c
=2 -{0 02 an
au | x(fa),u(fa),fa
E:"—ft__ o _=(01/m0]
ax | x(fa),ulfa),fa

and the linearized control law coefficients are given by

aK — _—
KiT(fa) = — | _ __ __ = [Ki1(fa) Kiz2(fa) Kia(fa)]
ax | x(fd),fa
(12)
. aK
Ke¥(fa) = — | _ _  __
afa] x(fa),fa

Summing up the design problem for gain scheduling, it is
to obtain a nonlinear control law (7) such that satisfy
eq.(8) and (12) subject to (9). Here in order to achieve
pole-assignment to the closed-loop linearization, eq.(9)

is assumed to be controllable for any fa € F.

Now the control law construction proceeds as follows{7];
step licompute a smooth K((fa) such that A(fa)+BX:(fa)
should have desired characteristic roots for
each fa., The local stability problem including
uncertainty of mass will be handled later in

section 2-3.
step 2!:In order to be able to satisfy eq. (8-b) and

(12), Kz(fa) must be chosen as

au(fa) ax(Fa)
— - Ketfa) ———
afa afa

Ke(Ta) = (13)

Eq.(13) is proved easlly as differentiating eq.
(8-b) with respect to fa.

step 3:0nce the linear gains Ki(fd) and K2(Ta) have
been fixed, choose a nonlinear control law of
the form (7) that satisfy (8'b) and (12).

As a simple form in step 3, We get a structure of the

gain scheduling control law as follows ;
u(t) = Ky T(fa(t)) [x(t) = x(faft))] + ufalt))  (14)

The eq.(14) is derived from (9) and (10) when setting

fa = fa(t). It is easy to see that (14) satisfies the co
nditions in step 3 using (13) even if K2(:) does not app

ear in (14),

Now, before the linear gain Ki(faq) in step 1 is comp
uted, two problems which are the uncertainty of suspended
mass and the acquisition of scheduling variable f4(t) on
real time will be discussed. The payload of MAGLEV is ch
anged according to the number of passengers. Hence the
mass can be expressed in the form m € [m~,m*], where m~
and m* indicate the minimum and the maximum value’of m.
Let mo denote the nominal value of mass. Therefore at
the design stage, only mo is given. Next an estimator is
in introduced to obtain the scheduling variable fa(t).

The estimator of disturbance fa is defined from the

SMLS model (1) as follows

2
fa(t) = mazit) + %[ ;ft; ] - mog (15)

Since the state vector [ z z i 1T in the control law
(14) can be constructed with measurements [z z i]7, the
eq-(15) is available without measuring another variables
in addition. It is now possible to carry cut the pole-
placement scheme in step 1 for computing Ky. The charact
eristic equation of the closed-loop linearization system

is given by
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A(s) = det[sI-(A+BK;T)]
=53+ §25%2+ 85 +8e (16)

where,

mg+fa 4
8o = 2K1y - —— (R-K13) (ng+fa)
cl cm

o an

82

2Zo
—— (RKi3)
(o

and the desired characteristic equation is defined as

A4*(s) = (s + a)(52 + 26wnS + wn2)

=53 + dzs? + dis + do (18)
where,
do = awn?
di = 2w + on? (19)

dz = a + 2Lwn

If fa(t) and m in eq.(17) are replaced by fa(t) and me
respectively, then the linear gain Kx(f'd(t)) = [K11 ()
Ki2(t) Kia(t)] is given from (16)-(18)

d Cho? -
Kii(t) = —52 —_——+ 2 J c{mog+fa(t))
mog+fa(t) °
d 2
Kig(t) = 2t —2 (20)
i mog+falt)
. _ Cdz
Kia(t) = R ~ 77

At last, a gain scheduled controller for SMLS is prop

osed as follows, modifying (14) slighty,

U(t) = KiT(fa(t)) AxCt) + G(fa(t)) (21)
where,
Ax(t) 1= x(t) ~ x(fa)

‘

. —_—— T
T(Fa()) = [zo 0 zo 4 (4(mog+falt))/c ] (22)

WFa(t)) = Rzol (4(mog+Talt))/c

The block diagram of SMLS with gain scheduling control
Is shown in Fig.2. ’
Remark 1:If the disturbance force is disregarded, that is

fa(t) = 0, t20, then the eq.(21) is the same
as just a fixed gain linear feedback controller
which is based on a linear approximate model co

rresponding to only one operating point.

2.z, i
(measured data)

gain fa
scheduling|«-—estimator|«

fa(t) : disturbance
reference

—_— l——* nonl inear

‘——> regulator——— SMLS y

output

7

Fig.2. Block Diagram of SMLS with
Galn Scheduling Control.

2.3 Local stability to both mass change and disturbance
As mentioned early, the gain scheduling approach is lo
cal in nature. Thus the overall performance and the stab

ility must be checked by extensive simulations. However,

‘under the condition the scheduling variable is siowly va

ryilng in a time average sense, it has been proved in [7,
9] that the gain scheduled control system provides stabi
lity.

In this section, tlé local stability problems to both
the uncertainty of suspended mass and the constant distu
rbance over F will be discussed. Substituting eq.(20) in
to eq.(16), the actual characteristic equation of closed

-loop linearization system becomes

Aa(s) = 83 + az52 + ags + ao
=3 e das? v 4™ Jy“) s+ | do M Jy“’ .
m yw(t) m yw(t)
2do
- W) - wit) ] (23)
where w(t) = mg+fa(t)
- - (24)
w(t) = mog+fa(t)
from (1),(14) and (24),
W(-w(t) = (m-mo)kz(t) (25)
Rewriting (25),
W(t) = w(t) = (n-mo)iz(t) (26)

Thus while the disturbance is slowly varying as much
as it does not make the velocity of lifting body change,
it is clear from(23) and (26) that the closed-loop roots
are independent on such a disturbance, and are affected

by only the change of mass.

3. Simulations and Discussion
Simulaticns are performed on the well-known }aboratory

mode1[2] whose data are as follows:
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io = 2[A]

2o = 1.5[mn]

mog = 44[Kgl

C = HoNZA = 9.9 x 1075

The design specifications for above SMLS are conslder
ed such that salisfies.

(i) damping ratio > 0.707

(i) suspension natural frequency ~ 10 Hz

In (19), we are choose a set of design parameters whi
ch are given by a=100, £=0.707, wn=50/0.707 (i.e.,do=500
x10%, di=15x10% and d2=200). The bounds of mass uncert
ainty are regarded as w™=0.8mo and m*=1,3mo. Only two
cases of m=m~ and m=m* are examined.

In particular, we have considered several types of
disturbance such as parabola, ramp, step, sinusoid, vari
ous general functions etc., whose magnitudes are all equ
al to or less than 40 % of nominal weight(m.g). The foll
owing three cases out of them will be shown in Fig.3 ~
Fig.7.

Type l(parabola) : fq(t) = 17.6sin(at), 0<t (1

Type 2(step) : fa(t) =[ 0 0<t (0.5
8.8 0.5<t<1 (20% of mog)

Type 3(general function) :

fa(t) =[ 8.8t+4.4t2sin(exp(1.2nt)) O<t (1
8.8 1<t<2

Now, three kinds of controller are compared with
together ;i the first one is a gain scheduled controller
(GSC), the second is a nonlinear feedback linearizing
control ler(NFC) proposed by Jin et al.[4], and the third
is a conventional linear approximation feedback control
ler(LFC)[2].

It is shown from Fig. 3 to Fig. 6 that the gain schedu
ling control have _very nice performances in all the
cases. Despite the large magnitude of disturbance and
mass uncertainty are applied to, the excellent transient
responsé and very Httlek steady state errors are shown,

Note that no integral action is introduced in this
gain scheduling controller.

In some cases(when the mass increases 30% of nominal),
a linear approximate feedback controller (LFC) have the
system to be unstable. An integrator added in LFC lbop
make the transient behaviour and steady state error not
to improve against general disturbances as shown in
Fig.7.

A nonlinear feedback linearization controller[4] has

good robust stability to almost all the initial condi

tions. However, simulations show that its control perfor
mance is very sensitive to both mass change and distur

bances,

4. Conclusions

One of the most important problems in EMS systems is
how much robust the designed controller is against pract
ical disturbances and uncertainty. With a view to solve
it, a gain scheduling controller for SMLS has been propo
sed. As the operating condition is a function of distur
bance, we choose the estimated disturbance as a schedu
ling variable. A simple estimator can be constructed wit
hout additive measurements. We showed that the gain sche
duling is robust if the disturbance is slowly varying as
nuch as it does not make the velocity of lifting body ch
ange (i.e., so that acceleration/deceleration is nearly
zero). The gain scheduling is inherently local in
nature. So the overall performance and stability of the
control system have been demonstrated by different simul
ations. In most cases, the gain scheduling control desig
ned for a SMLS model showed very good results. Comparing
with the gain scheduling, we performed the same simu
lations for two other control methods i (a) nonlinear
feedback linearizing controller (b) a fixed gain linear
approximate controller. Both method does not show the
satisfactory performances to the disturbance and the

mass change.
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m = 0.8me , Lype 3,

integrator gain 16842,

fa =



