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ABSTRACT

_This paper deals with the problem of robust TOF(Two Degree

of Freedom) He control design for a linear system with
parameter uncertainty in the state space model. The uncertain
system considered here is with the time-invariant nomn-bounded
parameter uncertainty in the state matrix. A TDF H. control
design is presented which robustly stabilizes the plant,
guarantees the robust M. performance and improves the
tracking performance for the closed-loop system in the face of
parameter uncertainty. It is shown that a suilable stabilizing
control law can be constructed in terms of a positive definite
solution to a certain parameter-dependent algebraic Riccati
equation and a good tracking performance can be constructed in
terms of suitable feedforward control faw.

1. Introduction

Over the past two decades there has been a great deal of
interest in the problem of robust control design. He control
theory has been developed for bhandling plants with
unstructured uncertainty, i.e. exogenous signal uncertainty.
The control law stabilizes the plant and also makes a
selected élosed loop transfer matrix as small as possible in
the Hw-norm sense. It is now known that a solution to this
problem for linear time-invariant systems involves solving a
pair of algebraic Riccati equations[1,23]. Very recently
interest has been focused on the problem of robust He
control for linear systems with parameter uncertainty in the
State-space model{4,5]. Most H. controllers are, however,
based on ODF(One Degree of Freedom) structure so far. In
ODF control systems it is well known that it is difficult or
even impossible to optimize the design trade-offs between
stability and performance which have to be made in the ODF

control system design.

Here, the goal is to design a TDF(Two Degree of
Freedom) He controller which robustly stahilizes an
uncertain system while guaranteeing a prescribed level of
disturbance attenuation in the He sense for the closed loop
system for all admissible uncertainties and simultaneously
improves the tracking performance for the closed loop system
in the face of parameter uncertainty. Although Grimble[6)
and Limebeer et al.[7] have proposed TDF Ha controllers,
they are given under systems without parameter uncertainty.
In the TDF He controller proposed here, the feedback
controller is designed to meet robust stability and disturbance
attenuation, while the feedforward controller is used to
improve the tracking performance for the closed loop system
in the face of parameter uncertainty. Here, necessary and
sufficient conditions for quadratic stabilization with an He
disturbance attenuation constraint of uncertain linear
time-invariant system with norm-bounded uncertainties in
the state matrix have been obtained in Reference [4].

In this paper we consider the problem of robust TOF He
control for linear time-invariant systems with norm-bounded
parameter uncertainty in the state matrix. The robust TDF
Hew control problem is solved via the concepts of good
tracking performance and quadratic stabilization with an He
-norm bound{4). The concept of good tracking performance
requires the existence of a feedforward controller to improves
the tracking performance for the closed loop system in the
face of parameter uncertainty. In addition, the gquadratic
stabilization requires a fixed feedback controller to robustly
stabilize the plant and also guarantee an He-norm bound
constraint on disturbance attepuation for all admissible
uncertainties.

control law can be constructed in terms of a positive definite

It is shown here that a suitable stabilizing

solution to a certain parameter-dependent algebraic Riccati
equation and a good tracking performance can be constructed

in terms of suitable feedforward actions.
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@ Notation : The following notation will be used in this
paper. Re(-) will refer to the real part of a complex
number and I denotes the identity matrix. Also, 4 mia[M]
denotes the minimum eigenvalue of the matrix M. Also,
the Hw norm of a stable transfer function H(s) is defined by
WH(s)W @ = sup {6 max (H(jw)): @ € R} where 0 wu ()
stands for the maximum singular value of a matrix.

RHZ™" denotes the set of real rational proper and stable

transfer function matrices of dimension mXn,

2. System Description and Definitions

In this section we will summarize the uncertain linear
time-invariant systems and the theory for the feedback and
feedforward control laws.

We consider the uncertain linear time-invariant systems
described by state-space models of the form

x(t) = [A+ 4A(0)]1x(t) + Byw(t) + Bau(d) (2.1a)
2(t) = Cyx(t) + Dyu(t) (2.1b)
y(t) = Cax(8) (2.1c)

where x(t) € R" is the state, u(t) € R™ is the control
input, w(t) € R® is the disturbance input, y(t) € R’ is the
measured output, z(t) € R° is the controlled output. A,
B), B;, Ci, D) and C; are constant real matrices of
appropriate dimensions that describe the nominal system and
4A(0) is a matrix representing the real-valued parameter
uncertamty in the state matrix, where ¢ is an uncertain
parameter vector belonging to a compact set x CR'

Furthermore, for a simplification we shall make the following
assumption,

Assumption 2.1. DT1C,, D] = [0, I].

Note that Assumpton 2.1 causes no loss of generality. It

is also a standard assumption in LQG optimal control and it
amounts to the orthogonality of Cyx and D,u in the cost

function and to nonsingular control weighting.

The parameter uncertainty A4A(o) considered here is
time-invariant and of the form 4A(g) = DF(0)E, ;vhere
Flo)e R™is an unknown matrix satisfying
F(o)'F(e)<I and D, E are known matrices of
appropriate dimensions. It is also assumed that for each
Fe R™ such that FTF < I, there exists a ¢ € x such

that F(o)=F.

In this section we will be concerned with the following
notion of stabilizability for the uncertain system (2.1).

Definition 2.1. Let the constraint 7 > 0 be given. The
uncertain system (2.1) is said to be stabilizable with an He
-norm bound y if there exists a fixed state feedback law
uz = -Ki(s)x, where Ki(s) € RHZ*" such that for all

admissible parameter uncertainty F(o6) the following

conditions are satisfied :
() The closed loop system is asymptotically stable, ie.
Ac= A+ DF(0)E-B3K; is asymptotically stable ;

() The closed loop transfer function from disturbance w to

controlled output 2, Ta = Co{sI - AJ) 'B. satisfies

the Ho-norm bound 1 Ta(s)l & < 7, where (A, B.
() is a state space model of the closed loop system.

n this paper we also use the concept of quadratic
stabilization with an He-norm bound[4].

Definition 2.2. Let the constraint y > 0 be given. The
uncertain system (2.1) is said to be quadratically stabilizable
with an Hw-norm bound 7y if there exists a fixed linear
state feedback law uz = -Kz(s)x and a symmetric positive

definite matrix Q € R™" such that the inequality

ATQ+ QA+ 'TITQBcBIQ +CTC, <0

holds for any admissible uncertainty F( o), where K(s) €
RHZ™ and (A, B. G) is a state space model of the closed

loop transfer function, Ta(s), from w to z.

3. Robust TDF H~ Control Law

This section considers the problem of robust TDF He
control for the uncertain system (2.1). Assuming that
perfect state information is available for feedback, we are
concerned with designing a fixed feedback controller to
stabilize the system with a given He. constraint on
disturbance attenuation for all admissible uncertainties which
satisfy F(o)TF(o)<I and a feedforward controller to

improve the tracking performance for the closed-loup system
in" the face of parameter uncertainty. As in standard He
control problems, we assume that the frequency weighting
functions have been absorbed in the system description.
Here attention will be restricted to a static state feedback

control law, ie. uz(t) = ~K2x({), where Kya(s) € R™". In
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this' case we have that A, B. and & are given by

Ac= A+DF(0)E- B:K, (3.1a)

B.= B, (3.1b)

Ce= Ci-D1K2 (3.1c)
whereas

Tals) = (Cy - DiK2)(sI- Ao) 7By (32

3.1 Stabilizability for Uncertain Systems
(State Feedback Control Law)

Xie and Souzal4,5] have shown that the quadratic
stabilization problem with an He-norm bound 7 could be
solved as follows :

Lemma 3.1. If the uncertain system (2.1) is quadratically
stabilizable with an He~norm bound 7y > 0, then it is also

stabilizable with the same H~-norm bound 7.

The approach adapted in [4,5] for solving the robust TDF
Ha control problem involves solving a parameter- dependent
algebraic Riccati equation associated with an He-norm bound
constraint 7 and the uncertainty in the state matrix. Given
the system (2.1) and any desired Hw-norm bound constraint

r >0, we define the following algebraic Riccati equation
corresponding to the problem of quadratic stabilization with
an Hw-norm bound 7 (referred to QSARE[4]) :

ATQ+ QA+ o[—T‘rB,BI— B:Bf|Q+ e @DD™Q

+ L ETEsClC 1) =0, 3
Note that when there is no uncertainty in the system, the
In this case the

QSARE reduces to the well known algebraic Riccati equation
corresponding to the problem of state feedback Ha control(3].

matrices D and E can be set to zero.

Theorem 3.1.[4] The uncertain system (2.1) is quadratically
stabilizable with an Hx-norm bound y >0 if and only if
for a sufficiently small & >0 there exists a constant
€ >0 such that the QSARE has a positive definite solution
Q. Furthermore, a suitable feedback control law is given by

u{t) = ~K,x(8), Ki= BIQ. (34)

‘Theorem 3.1 provides necessary and sufficient conditions for
quadratic stabilization with an He-norm bound 7y for the
uncertain system (21). When there is no uncertainty in the
system, ie. A4A(0) =0, Theorem 3.1 reduces to a well

known He control result for the nominal system(3].

3.2 Robust Tracking Performance for Uncertain
Systems (Feedforward Control Law)

The aim of this subsection is concerned with the notion of
robust tracking performance for the uncertain systemn (2.1).
Most of the robust control design problems are solved
through the state feedback control system based on the ODF
scheme. However, when the ODF state feedback control
system is faced with demanding tracking performance
robustness, it is difficult or even impossible to make the
trade-offs between stability and performance. Therefore, we
will solve this problem by the TDF scheme including
feedforward control law.

Lemma 32. If we can obtain K7 from Theorem 3.1 and K,
which is satisfied with below (3.5), K, guarantees a good
tracking performance for uncertain system (2.1).

u(¢) = Kyr(t) (3.5a)

Ki= -(C:l(A +DE) - B;K;] 'B; ! (35b)
Proof : We assume first the number of control input u
equals to that of output y. To select the feedforward
controller K;, we consider TFM(Transfer Function Matrix)
from reference input r(s) to output y(s) with the largest

uncertainty, i.e.
y(s) = G(s)r(s)

G(s) = GolI+ ¢ (s)B3 K] 0 (s)B3K;
O(s) = (s - [A+DED™.

because reference input has energy in the low frequency

where Generally speaking,

regions, we select K; which satisfies the condition in DC
(s=0)
¥(0) = Ir(0) (3.6)
ie, we select K; which makes G(0) be identity matrix
ColI + 0 (0)B2K2] 'O (MB:Ky = 1
or
K,

"

-(CalI- (A +DE) 'B:K;] A +DE) 'B; }*

‘( Cz[ (A+DE) - Bsz] 'le )1.

Thus we have the required result (3.5).
ooa

Combining Theorem 3.1 with Lemma 32, we have the
following result which is the solution of the robust TDF He
problem :
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Lemma 3.3, If the Theorem 3.1 and Lemma 3.2 are satisfied
simultaneously, then the robust TDF He controller robustly
stabilizes the plant, guarantees a robust He performance and
improves the tracking performance for uncertain system (2.1)

and any desired Heo-norm bound constraint 7 >0,
Furthermore, a suitable TDF control law is given by
U= u+uz 3.7

where u(¢) = K;r(t) and wz(t) = -Kzx(t) with

Ki = -(Cil(A +DE) - B2K2] "B2)' and K. = BIQ,

respectively.

Proof : Follows immediately from Theorem 3.1 and Lemma
32
(]

4. Numerical Example

Consider the uncertain system

X0 = (['(1)‘1) +Dfe)x(:>+[O?S]w(m[‘l’]uu), “n

where

D=[g 2]'e=1v Iflﬁl, y =1, € =1

We will apply the method described above to determine the
range of values of a. Using above matrices, we now
determine if the corresponding Riccati equation (2.4) has a
positive definite solution. The TDF He controller proposed

has been designed with the largest uncertainty, ie., f= 1.

Fig. 1 and 2 show step responses of the closed-loop
system for @ =0.1 and a = 0.8, respectively. Note that
the real value of f has been taken as f= 09 and 0.1 in this
The ODF Hw controller{d] is also designed for

comparison. These curves indicate that the robust TDF He

simulation.

controller robustly stabilizes the plant, guarantees a robust
H. pérformance and improves the tracking performance for
uncertain system (4.1) but that the ODF He. controller does
not show good tracking performances.
conclude that the TDF He controller is not only
quadratically stabilizable but also improves a good tracking
performance in the region of 0 < a <0.8.

Here, we can

5. Conclusion

The aim of this paper is to deal with the problem of
robust TDF He control design for a linear system with
parameter uncertainty in the state matrix of the state-space
model. We proposed the robust TDF He control design
which robustly stabilizes the plant, guarantees a robust He
performance and improves the tracking performance for
uncertain system. Also, we showed via a simulation the
robust stability and performance of the robust TDF He
controller proposed here.
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Fig. 1 : ODF and TDF closed-loop step response (a = 0.1). Fig. 2 : ODF and TDF closed-loop step response (a = 08).
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