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Abstract: In this paper, we investigate a set-membership
identification approach to the quantification of an upper bound
of model uncertainty in frequency domain, which is required
in the H.. robust control system design. First we formulate
this problem as a set-membership identification of a nominal
model error in the presence of unknown noise inpul with
unknown bound, while the ordinary set-membership ap-
proaches assume that an upper bound of the uncertain input
is known. For this purpese, the proposed algorithm includes
the estimation of the bound of the uncertain input. Thus the
proposed method can obtain the hard bound of the model
error in frequency domain as well as a parametric lower-order
nominal model. Finally numerical simulation results are
shown to confirm the validity of the presented algorithm.

1. Introduction

Recently system ideatification for robust control system
design has collected much research interests [1].. For in-
stance, the H.. control system design needs the knowledge
on both nominal model and its frequency domain mode!
error bound. Then the model error quantification should be
carried out, while conventional identification schemes aimed
mainly at estimation of only nominal models. For this pur-
-pose, first, H.. identification schemes minimizing the H.
error norm have been investigated and several kinds of
worst error bounds were established [2][3]. However these
error bounds cannot link directly with the dctermination of
the uncertainty bound or weighting function in frequency
domain for controller design. Second, the set membership
identification has also been developed to estimalte a parameter
set of the nominal model on the condition that the model
errog bounds are given.a priori [4]-]6]. In [4], a bound of
the parameters of the input-output model was given as an
ellipsoidal bound on the assumption that the upper bound
of model uncertainty is given a priori in frequency domain.
However, this scheme could not link with the H. control
design. On the other hand, if the upper bound of model
uncertainty in time domain is given as a prior information,
the model error bound in frequency domain can be estimated
via the set-membership identification method [5]{6], which
is more suitable to the controller design. Third, the modet
validation approach has been proposed to investigate the
problem how to find out the smallest set of the model error
and the unknown noise input, given a nominal model and a
finite input-output data sequence [7}-[9]. This interesting
approach, however, cannot give the upper bound of model

uncertainty but a minimal mode! set which does not invalidate
the given data. The fourth is a statistical approach in which
unmodeled dynamics is treated as a realization of a stochastic
process described by a parametrized probability density func-
tion {10]. This method is different from the above three
approaches in that it gives a soft or statistical bound of
model uncertainty. Comparison of these approaches are
summarized in Table 1.

In this paper, we propose a new identification scheme
for a hard bound of unmodeled dynamics in frequency do-
main, which will be linked directly with the H.. control
design. We formulate this problem as a set-membership
identification of a nominal model error in the presence of
unknown input with an unknown bound, while the ordinary
set-membership approaches assume that an upper bound of
the uncertain input is known. For this purpose, the proposed
algorithim includes the estimation of the bound of the uncer-
tain input. Hence, in this scheme we do not need the as-
sumption that the bound of disturbances and the model
error bound in time domain are known a priori, which is
different from [4]-[6]. Now we can apply the identification
of the model error bound even when the nominal model is
described by a transfer function or a state space model,
which is also a new aspect of the proposed method. Finally
validity of the proposed scheme is studied in numerical
simulations with comparison to other approaches.

2 New Scheme for Qualification of Model Error Bound

As shown in Fig.1, the true input-output description
G“(z) is assumed to be given by

G*(2) = G(2,6") + AG(2) (1)

where ((z,68°) is a stable nominal model and AG(2) is an
additive model uncertainty.

The nominal model is normally chosen a lower-order
parametric model. In this paper we treat with the transfer
function model described by

By(2) _ bzl+--+b2"

G(2,6) = =
Ay(z) l+az'+--+a,z"

2)

where 8 =(a,, -+, a,,by, -, b,)" . The order of the system
£t is chosen lower than that of the unknown true plant.
Other choices of the nominal model are the FIR model and
the Laguerre-Kautz model, which are all numerator models
which have unknown parameters in only the numerator. The
proposed method is applicable to (2) as well as this numerator
type of nominal model.
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‘ Table 1 Schemes for identification of model error bound

Algorithms

Posteriori infor-
mation (Purpose)

Prior information

identification

Set-membership

Hard bound in
frequency domain

Nominal model Model error Noise Refs.
FIR model FIR model Upper bound  [5](6]
Laguerre model D(z)known known

Kautz model

Transfer function  FIR model Upper bound ~ This paper
State-space model  D(z) known unknown [
Nonpsrsmetric Frequency Upper bound  [6]

model : dornain shape known

Hard bound in
parameters of
transfer function

Transfer function

D(z)known

Upper bound 4]
lal.<1

known

Stochastic Soft bound in FIR model FIR model with  Probability ~ [10]
embcedding frequency domain  Laguerre model stochastic para-  known
Kautz model meters

H_identifi- Hard bound in Nonpsrsmetric Upper bound  [2]{3]
cation frequency domain  model known

Model Vali- Identification of Transfer function  Transfer function Upper bound [7][8]{9]
dation nominal model and lal.<1 known

model error invalid- D(z) known

ating finite data

True plant G°(z)

o)
Model error
N SRR ()
G(z,6) A

Nominal model

Fig.1 ldentification of nominal model and its
model error bound

The model error AG(2) is assumed to be described by
AG(2) = D(2)A(2) 3)

where D(z) is the known stable transfer function and A(2)
is the unknown stable transfer function. In this paper,
D(z) =1, A(2)is given by

AG(2) =K ()= 8z 4)

[E3]

where {8,,8,, --- ) are unknown, Thercfore, we take a nom-
inal model error described by the FIR model as

A2)=Y 527 (5)

i=1

where § =(6,,8,,+-,8,,)".

The input-output data is obtained via the noisc-corrupted

true input-output relation as
¥(t) = G*(2)ult) +v(t) (6)

where u(t) is a known input with the known bound ¢,, and
u(t) is an unknown but bounded zero-mean noise where
the bound ¢, is unknown, that is,

lut)|sec,, (vi)|se, 7

The assumption that ¢, is unknown is one of the feature of
this paper, while almost all other approaches assumed that
¢, is known.

The identification purpose is to give the uncertainty bound
My (e’*) > Oof the estimated nominal model such that

G (i)~ Gle’”,0y)| < My(e™) Vo (8)

Now the problem to be solved is to obtain éN and the
minimum bound of M, (e’) using afinite number of input-
output data, on the condition that the nominal mode! and
the nominal model error are given by (2) and (5) respectively,
n and m are given and ¢, is known but ¢, is unknown.

The above problem is rather difficult. In this paper we
formulate the problem as follows: Given sufficiently large
number N of input-output data, estimate the nominal model
parameter 8, and an upper bound My (e’*) in (8).

3 Set-Membership Identification Approach

3.1 ldentification model of model error

The proposed scheme for identification of the model
error bound is depicted in Fig.2 [11]. The first step is to
estimate the paramelers 8 of the nominal reduced-order
model by applying the prediction error method in which the
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squares sum of the ercor e(t) = y(t)— y(t) is minimized
where $() = G(z,8) u(¢). Filtering the input u(t) and the
output y(t) with low-pass filters is effective in reduction of
bias error of the nominal model identification in the frequency
domain [12].

The second step is to take a set-membership approach to
determine an upper bound of model error. From Fig.2 we
can represent the input-output relation as

e(t) = G°(2)ult) + v(t) - Gz, Ou(t)

= (G(z,6) + AG(2)ult) — G(z,Oult) + vt)
= M2)u(t) +{AG(2) - A(2)Jul(t)

+HG(2,0)- Gz, Du®)+v®) )
By defining the uncertainty term w(t) as
wi(t) =[AG(z) - A(2)ult) _
HG(z,0)~ G(z,0))u(t)+uv(t) (10)
we have the description of the model uncertainty as
e(t) = A(2)u(t) + wlit) (1
jwit)<e (12)

Now the problem is reduced to the set-membership (SM)
tdentification for (11) and (12), though the bound ¢ in (12)
is unknown,

3.2 Ordinary set-membership identification

We will review the ordinary set membership identification
scheme based on the optimal bounding ellipsoid algorithm,
and then go on to extend it to the case in which the upper
bound of the noise input is unknown.

(11) is rewrilten as

e(t) = ] S +w(t), |wlt)|<c (13)

where & =(8,,8,,---,8,)" and @;(t) = (u(t - D,u(t -2),
-, u(t—m))T. Let S, be a convex polytope defined by
= {8 :(elt) - T 1)8)? < ¢?}. If the input-output data
{u(t), e(t)} are available, the true parameters § should be
inctuded in the intersection of the subsets {S,}. By using
* the optimal bounding ellipsoid algorithm [4], we can calculate
the ellipsoid £2, which out-bounds the intersection of the

e e e el L,
1

' True plant G°(z)

— AG(z) v(e)
: Model error '
u) 5 +1 +|y(e)!
e G FOOT
Nominal model

. y(e) * el
: G |-
é Esnmaled nommal model ) Li(t)

e(t)

SN Az)

Nominal model error

Fig.2 Schematic diagram of the proposed method of identi-
fication of the nominal model as well as the model
error via the set-membership identification approach.

previous ellipsoid £2,_; and the polytope , iteratively as
Q =18 (5= BENTR NS -5 < 1) (14)

where the center value 3(¢) and the matrix P, (¢) relating
with the volume of the ellipsoid are updated as follows:

Step 1: Let the initial conditions be 6(0) =0, P (0) = af
where o is a sufficiently positive large.

Step 2: Solve the next algebraic equation with respect to
Al2) as

a (A () + o (DAR) + a(t) = 0 (15)

where o, (t) = (m - De?G2(t), a,(t) = G 2m - Dc?
-Gt)+ 2(t)), ay(t) = m(c® - £2(1)) - G(t), e(t) = e(t)
~o (1)8(t - 1) and G(2) = T (OP;(t - Dy (D). 1 y(d)
< 0, use the most solution A(2) of (15). If a;(¢) 2 0, set
At)=0

Step 3: Update the parameter set by

5(8) = 8t - D+ AR5 ()e(?) (16)

Q= R~ -2 BEDBDRORE- 5,

PO === @10 (18)
2

02(2) = 1+ Alt)c? -% 19)

Now, if the upper bound ¢ of the uncertainty term w(t)
is given, we can obtain the ellipsoidal region (14) recursively
by using the above algorithm.

3.3 Scheme for estimating unknown bound ¢

It is noted in (9) that the uncertain term w(t) consists of
the unknown true unmodeled dynamics AG(z), unknown
nominal model G(z,0) and the random noise v(¢). On the
assumptions of the stability of the identified system and the
boundedness in (7), w(¢) becomes also bounded. Therefore,
in this section, we will give an effective scheme for estimating
an upper bound c satisfying that |w()| < c.

Before showing a scheme for evaluating ¢, we clarify
what factors the upper bound c is effected on. From (10)
the uncertainty term w(¢) depends on the truncatjon error
in the FIR model A(2) for describing AG(2), the identifica-
tion error of the nominal model G(z,0)—-G(z,0), and the
random noise v(¢). If the truncation error is outbounded a
priori as

DAL (20)
k=m+1

and it holds that Gy — 8 (N — =), then the upper bound
¢ can be evaluated by

|wt)|<c=ckn+e, 1)

Let é be an estimate of the upper bound c. We shall define
two bounds, an upper and lower bound for admissible ¢Z;

ch(t) = EX(t) + — G(t) (22)

ci () = £2(t) (23)

respectively. 1t is obvious that c}(¢) < cZ(¢) for all ¢.
The quantity * is calculated by replacing ¢ with € in

the SM identification algorithm above given. If the estimate
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¢%'is less than cf(¢), the updating of the parameter set is
carried out at time¢. Therefore, ¢* should be chosen so
that ¢* < ¢f(¢) for the updating. On the other hand, if ¢? is
larger than cZ(2), it holds that 6%(¢) 2 1. Thus ¢* should
be chosen such that

cf(t) < < i)
Now we take an estimate of the upper bound as
¢t =supe¥t) 2 clt) (24)
t2M,

where M, is so large that £2(¢) is not influenced by the
initial conditions. Thus we have;

Lemma: If é is chosen to satisfly (19), then ¢ is an upper
bound such that

¢t zw?() forall tz M, 25
Proof: From (24) we have
& > sup(e(t) - T (1)5(t - D)
2M,

= sup [(p ()6t - D)? + w(t)
M

t2M,

+2(07 (1)8(t - D)w(t)] (26)

When (pﬁr(t)S(t ~ 1) and w(¢) have the same sign, the RHS
of (26) has the maximum. Then we have
¢ > supw(t)
t2M,
that leads to (25).

4 Quantification of frequency domain error bound

By using the estimate ¢? given by (19), we can calculate
the ellipsoid region €, specifying the parameter set of &
via the set-membership identification as

(G -8B S -sun <1 @n

_ Let the discrete Fourier transform (DFT) of &(¢) and 1)
denoted by A(e’*) and A(e’*) respectively, which are rep-
resented by Ale’®) =@ (e’)d  and A(e’) =T (/)
8(t), where @7 (e7®) = (e, .- ,e™/*"). By using the meth-
od given in [5], we can compute numerically the corre-
sponding ellipsoid-in the complex plane as

) N \T
Rela(e™) = Ale? )]) @l (e”)
Im{A(e’?) - Ale/™)]

Relafe”™) - ‘3“&”] <1 (28)
Im[A(e’) - A(e’)]
where
v, [RepT(e™) " .
P(e/*) = (Im (pT(em)JP,(t)(Re pe’) Im (p(e" )

Thus, the nominal model-error in frequency domain is given
by A(e’®) (by the center of the ellipsoid) and the upper
bound of the model error is given by the maximum distance
of the ellipsoid {rom the origin. Thus, we can give the
bound M (e’®) in (8) by the envelope of the calculaied
ellipsoids (28).

|G"(ef~>—G(ef"',éN>|
Sl Ale?™)

+ Ellipsoid Bound = M, (e/*) (29)

5. Numerical Examples

5.1 3rd-order exponentially decaying system
We consider the same example as treated in {5], which
is given by
21'
G“(s) 50

R YR TT (30)
(s+ (s +5)s + 10)

The input-output data is sampled with the sampling interval
T = 0.2 and with the zero-order hold. The input signal
u(t) is a uniformly [—1, 1] distributed white noise, and the
disturbance input v(¢) is also uniformly {-0.01, 0.01] dis-
tributed.

In the first example, we have chosen the first-order ARX
model as the nominal model, and the nominal mode! error
(FIR model with truncated order m = 35). Fig.3 indicates
that the estimated upper bound ¢ of ¢ given by the proposed
scheme is actually the bound of the uncertain input w(t).
Fig.4 shows the Nyquist curves of the true plant G°(e'?)
and the estimated nominal model error A(e™) which is
given by the center of the ellipsoids, in which the uncertainty
bound is given by the size of the ellipsoids. The ARX
model was identified by applying the prediction error method.
Fig.5 illustrates the Bode plots of the true plant and the
estimated nominal model (the first-order ARX model).

i}
4

4

o 200 am 00 a0 fooo 1200

Fig.3 The estimated upper bound ¢ of w(¢) obtained by
the proposed scheme, and the actual value of w(t).

—— G’ O+ X' K

o jm

True %)

Fig.4 Nyquist plots of the true plant and the estimated of
G(e’®,0,)+ A(e’”) and ellipsoidal bounds.
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Fig.5 Bode plots of the estimated upper bound of model
error My (e’®).

As shown in Fig.5, there exists the model error in high
frequency range which is also plotted by the broken line as
the true maodel error. This model error is of course unknown
but even if the disturbance bound ¢, and the model error
are unknown, the proposed scheme can give the nominal
model error A(e’®) and the upper bound of the mode! error
M, (e’”). The proposed scheme does not utilize any prior
information on the identificd model.

If we adopt the second-order ARX mode as the nominal
model, we can reduce the model error in high frequency
range. In this case the size of the ellipsoids can also be
reduced as shown in Fig.6. Fig.7 plots the Bode diagrams
of the upper bound of the model error M, (e/®) which is
rather improved.

o5

of

0.5

-1

s Gle™ By) + &)
: g
s True G%(e2*)

23

B L

-0
-1
I T STTY T T

Fig.6 Nyquist plots when the nominal model is the
¢ second-order ARX model.

When we employed the FIR model as the nominal model,
we sometimes encounter with the instability problem of
identification. Normally we pass the input-output data to a
lowpass filter to obtain the nominal model. In the case of
the FIR nominal model, this filtering brings about the ill-
conditioning of the input autocorrelation matrix. As we
have repoted in [14], we should better introduce the reg-
ularization parameters to the input autocorrelation matrix.
The optimal choice of these parameters can improve the
mean squares error of the impulse response estimate. In
this examle, the optimal regularization scheme was adopted
to obtain the stable estimate of the nominal model in Fig.8.

Estimated
nominal model
{solid line)

True model
(broken line)

é 1 Up‘pf bound M (e*)

103 107 01 100
Frequency

Fig.7 Bode plots of the estimaled upper bound of model
error M, (e’”) when the nominal model is the
second-order ARX model.

-
[ Estimated
10 True model nominal model
(broken line) (solid Hine)
0
_g 10| __Upper boundM (e}
Nominal model cnnrl 3(0")1
-30 “True model evror
H v e
‘ﬁ, ) 107 ot 0 0t to?

Frequency

Fig. 8 Bode plots of the estimated upper bound of model
error M, (e’*) when the nominal model is the
finite impulse response model.

5.2 7th-order damped oscillating system
Let the true model be described by

1 3 w?
ey L 0.05(; - (31
G"(s) s+1[1+ 5(“1)‘U,s2+2g.~wi8+w?]( )

We took the sampling interval as 0.5 to obtain the discrete-
time model. The Bode plot of the magnitude is given by
the broken line in Fig.9. The gain magnitude has three
spectral peaks, while we take the nominal model described
by a simple first-order ARX model

bz!

G(2,0) = —
(2,6) 1+az?

The parameters @ and b in the nominal mode! are obtained
by use of the ordinary prediction error method in which we
filtered the input-output data with a low-pass filter. The gain
magnitude of the estimated nominal model is also shown by
the solid line in Fig.9. Fig.10 shows the Bode plots of the
model error, however, the results in the low frequency range
is-nol numericaily accurate. We have reported why the
accuracy cannot be attained and proposed the efficient algo-
rithm based on the decimation. The estimated error bound
is very much improved by the decimation scheme as shown
in Fig.11.

— 376 —



o 2
Estimated 0
nominal model

E (solid line) i

]
X
£
True modet \ |
{broken line) \;
10] \
2
14
101 10! 101 e [th

Frequency

References

]

[2]

{3

{4]

Fig.9 Bode plot of the true plant and the estimated nominal

model (the first-order ARX model)

A Upper bound M, (e}

-0 f.r
§
S»
30 Nominal model error |Ale”)| :
i
t
True model ervor ™ [
-50
TioY 101 101 10 10!

Frequency

Fig.10 Bode plot of the upper bound of model error

(Decimation is not employed)

n Upper bound M, (e")_/_/\/\

Nominal model error [4(e”®)]

True model emoc ™,
50
60 - :
N 101 07 100 101
Frequency

Fig.11 Bode plot of the upper bound of modet error

(Decimation is employed)

6. Conclusions

(5]

(6]

17

(8

[9}

{10]

{i]

{12]
[13]

[14]

(15}

This paper have presenlcd a new practical scheme for
identifying the frequency-doinain model error bound without
using any prior information on the model uncertainty and
the disturbance input but using only accessible input-output

data.
upper bound of the uncertain input.

The proposed scheme includes the estimation of the

— 377 —

Special Issue of System Identification for Robust Con-
trol Design, IEEE Trans. Autom. Contr., vol.AC-37,
no.7, 1992,

A.J. Helmicki, C.A. Jacobson and C.N.Nett, "Control
oriented system identification: A worst-case delermin-
istic approach in H_ ", IEEE Trans. Autom. Contr.,
vol.AC-36, no.10, pp.1163-1176, 1991.

G. Gu and P.P. Khargonekar, "Linear and nonlinear
algorithims for identification in H_ with error bounds”,
IEEE Trans. Autom. Contr., vol.AC-37, no.7, pp.953-
963, 1992.

R.L.Kosut, M.K.Lau and S.P.Boyd, "Set-membership
identification of systems wilh parametric and nonpara-
metric uncertainty”, IEEE Trans. Autom. Contr.,
vol.AC-37, no.7, pp.929-941, 1992.

B.Wahlberg and L.Ljung, "Hard frequency-domain
model error bounds from least squares like identification
techniques”, IEEE Trans. Autom. Contr., vol. AC-37,
no.7. pp.900-912, 1992,

R.C. Younce and C.E. Rohrs, "ldentification with non-
parametric uncertainty”, IEEE Trans. Autom. Contr.,
vol.AC-37, no.6, pp.715-728, 1992.

R.S.Smith and J.C.Doyle, "Mod! validation: A connec-
tion between robust control and  identification”, IEEE
Trans. Autom. Contr., vol.AC-37, no.7, PP.942-952,
1992.

K. Poola, P.Khargoneckar and A. Tikku, "A time-
domain approach to model validation”, Proc. ACC'92,
pp.313-317 (1992)

T. Zhou and H. Kimura, "Minimal H_ norm of transfer
functions consisting with prescribed finite input-output
data”, Proc. SICE'92 pp.1079-1082 (1992)
G.C.Goodwin, M.Gevers and B.Ninness, "Optimal mod-
el order selection and estimation  of model uncertainty
for identification with finite data”, Proc. the 30th IEEE
Conf.

Decision and Control, 285/290 (1991)

M.Kawata, H.Ohmori and A.Sano, "Set membership
identification in case of unknown bound of noise input”,
Proc. 15th Sym. Dynamical System Theory, pp.199-204,
Japan, 1992

L.Ljung, System ldentification, Theory for Users,
Prentice-Hall, 1987.

E.Fogel and Y.F.Huang, "On the value of information
in system identification: Bounded noise case”, Auto-
matica, vol.18, pp.229-238, 1982.

A. Sano, H. Ohmori and M. Kamegai, "Stabilized iden-
tification via GSVD optimized based on Bayesian in-
formation theoretic criterion”, Proc. IFAC/IFROS
Symp. Ident. Syst. Param. Estim., pp.907-912, 1991.
A. Sano and H. Tsuji, “Optimal sampling interval for
system identification based on decimation and interpo-
lation”, Proc. IFAC World Congress, Australia, 1993.



