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Abstract

This paper presents an application of back
propagation neural network to the tracking control of
line of sight stabilization system. We design a neuro-
control system having two neural networks one for
learning system dynamics and the other for control.
We use a learning method which adjusts learning rate
and momentem as a function of plant output error and
error change.

1. Introduction

Common control objective of most industrial
plants is that the outputs of the plants track given
reference trajectories in order to oblain satisfactory
performance. The dynamics of controlled systems are
usually simple (e.g. linear) and explicitly known so
that modern control- theory can be applied successfully.
Even if it is possible to development an accurate
model, the resulting control algorithm is so
computationally intensive that it becomes infeasible to
implement in a real time control environment.
Investigating the vperformance exhibited by an
experienced human operator, it is believed that the
controller should be designed to have experience and
knowledge gained during the training process.
Recently, neural networks are of interest to the control
community because they have potential to treat many
problems that cannot be handled by traditional
approaches. The application of artifical neural network
promises a high computation rate provided by massive
parallelism, and a great degree of robustness, or fault
tolerance due to the distributed representation, and the

ability of adaptation, learning, and generalization to
improve performance. Back propagation neural
network are most prevalent neural nework architecture
for control applications because they have the
capability to learn system characteristics through the
noulinear mapping.

The application of neural networks for controlling
physical systems has been explored{l-3l. The back
propagation algorithm[4] is widely used for learning
multilayered neural networks, but it converges very
slowly. In order to improve its convergence and
performance, several accelerated learning algorithms
have been proposed, for example Jacob’s delta-bar
~delta algorithm(5], a parallel kalman algorithm[6} and
new  accelerated learning  algorithm{7].  These
algorithms take the heuristic approach where some
local information of the error function is utilized.
However, these algorithin still have some room for
improvement because they fail to sufficiently reduce
the oscillation of weights.

In this paper, we proposed to a learning nlethod
which adjusts learning rate and momentem as a
function of plant output error and error change in
order to reduce oscillation of weights and obtain good
performance. Also, we will design a neuro-controller
instead of conventional lead lag controller for the Line
Of Sight (LOS) stabilization system. The neuro-
controller  controls/stabilizes angular position and
angular velocity of LOS stabilization system. Since
the conventional design approach is first to develop a
stabilization subsystem to minimize inertial jitter and
then to design a tracking subsystem to control overall
orientation{8-10). The primary purpose of this paper
is to examine and discuss design consideratons and
tradeoffs which arise under the proposition that neuro-
controller substitute the lead lag controller of the LOS
stabilization system.

Section 2 of this paper reviews typical LOS
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stalilization and tracking system with emphasis on
how the characteristics of the stabilization and tracking
sensor play into overall pointing and tracking
performances. In order to accelerate learning speed
and to improve convergence, we implement a new
variable learning algorithm and overall neural control
Simulation results in Section 4
provide comparision of the neuro-controller with
learning rate modification and the conventional neural

scheme in section 3.

controller.

2. Line of sight stabilization and tracking system

Design and developmemt of the line of sight
stabilization/tracking system seeks to configure an
electro-mechanical assembly that is capable of
rejecting and responding to the effects of
environments, target maneuver and host vechicle
maneuvers and distburances so that payload LOS is
maintained on the target with sufficient accuracy and
without jitter. Typically, two subsystems compromise
the LOS stabilization and tracking system and each
addresses specific functions and requirements.

The stabilization subsystem is an
mechanical assembly designed to isolate the payload
from host vechicle. Passive, active and combined
approaches may be used to obtain required perfomance.
The performance of active systems, also commonly
refered to as stabilization servo systems, is inherently
tied to the performance of the inertial sensor.
Currently the majority of LOS stabilization subsystems
are implemented using gyroscope to sense inertial
- angular motions of the payload, and in, some cases,
also the disturbance environment. The sensor noise
and frequency response characteristics of the
gyroscope are important parameters which constrain
and govern stabilization subsystem performance.

The tracking subsystem, on the oter hand, is a
process which serves the function of controlling the
stabilization subsystem so that payload is accurately
pointed at the target. Its implementation typically uses
analog and digtal electronic, optical, electro—optical,
electro-mechanical and computer software. The
relative geometry and dynamics of the target and
tracking system host vechicle drive the function and
performance requirement of tracking subsystem. The
LOS tracking subsystem and gyroscope model are
shown in more detail in Fig.l. Tracking error is
defined as the angular velocity error, @, :

electro-

De = Dand — @ los )

where ©gng is the commanded angular velocity by

gunner’s handle and @ is the angular velocity of

LOS.
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Fig.l. (a) Functional block diagrom of LOS stabili-
zation and tracking system.
(b) Tracking subsystem of LOS.

2.1 Gyroscope

Most tracking systems use gyroscopes to help

stabilize and control the LOS for tracking sensor.
Typically, the gyroscope may be a significant part of
the cost of the tracking system and, also require
significant power which is often limited, espeoially for
tactical applications. The gyro senses any rotation of
the gimbal. The gyro output signal is conditioned and
amplified by servo electronics and fed to the motor.
A simple rate integrating gyroscope is modeled in
Fig.2.
This type of gyroscope wil be mounted directly on the
structure that supports the payload which is to be
stabilized. Transfer function of gyroscope 1is given as
follows

be o - ke @

Domd ~ O s s(1+1,8)

ke = 8 V rms/RAD, <, = 000087. The
gyroscope input is velocity error between comnanded
angular velocity by gunner’'s handle and angular
velocity from LOS. v, is the voltage from gyro pick

where
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Fig.2. Block diagram of rate integrating gyro.

off, which transforms angular velocity error to rms
voltage by 8 v per radian.

2.2 Motor and actuator

The types of motor/actuator include dc, ac or
brushless dc, hydraulic, and many others, each of
which can be directly coupled or geared to the load.
Dc motors are used in most stabilized gimbals because
they have an ideal mechanical form factor and because
they eliminate gear train backlash, ripple, and low
frequency resonances often inherent in gear trains.
However, each type of actuator has its applications.
The geared drive, for example, is often used for
low-performance gimbals that are exposed to high
torque distburances such as unbalanced payloads and
aerodynamic loads. Piezoelecric actuators and voice
coils are also candidates for servomechanisms,
particularly for small loads. Regardless of the type of
motor/actuator selected, it must provide the combined
torque and rate required for all operating scenarios.
The main tradeoffs and specifications that must be
considered in motor/actuator are peak torque, power,
slew rate, smoothness, form factor/size and mechanical
coupling.

Block diagram of torque motor of LOS
stabilization system is in Fig.3.
that the torque motor is driven by cwrent signal
through the cuwrrent amplifier and current limit.
Transfer functon of the torque motor is
Twme(s) = Kee *Km*Eals) where Kun is transfer

coefficient of voltage to ampere and K. is a torque

This figure shows

constant and 7T me is motor torque. The perimissible
maximum input voltage of torque motor is restricted

by 10 volts.

Ea -—J Kve

F—Tng

Ia
LIMIT *———— Km

Km = 73 in-oz/A

K = 0.667 A/V

Fig.3. Block diagram of a torque motor.

2.3 Gimbal dynamics

Gimbal assembly provides the interface between
the base of the system and line of sight. System
performance cannot be realistically asserted without
complete evaluation of the various mechanism through
which base motion is coupled into line of sight angular
motion.  Angular velocity coupling is due to gimbal
geometry, and torque coupling is due to the kinematic
relationships between the gimba! assembly parameter
and base motions. In a given system, the significance
of many of the terms depend on the severity of the
base motion environment, the modes of system
operation and the implemention of gimbaling
mechanism.  However, we will use the linearized
transfer function which is written as

Q ps(S) _

Togls) ~ Q@

s
_
Jas“+Ces+K

where J.=28, C,=8, K=0.244 and J. is the inertial
moment and C, is the coefficient of viscous friction

and K is the equivalent spring force.

3. Neural network learning method and contrel
scheme.

The proposed neural network control architecture
for LOS stabilization system is depicted in Fig.4. This
architecture consist of two neural networks, which is
one for identification and the other for control. In
order to train neural network for identification, We
define the cost function as follows.

E- 4 T (¥« - ourw? @

where Yy is the plant output and OUTx is the neural
The structure of

neural networks is shown in Fig 5  State of each
neuron unit is given as the weighted inputs from the

network output for identification.

previous layer and each neuron’s bias. State of each
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neuron is transformed nonlinearly by a nonlinear
sigmoid function f(x) to obtain input except one of the
input layer which is transformed linearly. The
input-output relationship of neuron unit is described
as follows.

net = 2":1 (Wg OUT)
p:

OUT; = f (netj)

_ 1-e*
f(x T e (5)
¥emd —s GYRO {——] NNC PLANT Wios
AN '

NNI OUTy

pe ;

Fig.4. Architecture of neural network control system
to LOS stabilization system.

i j k
Input Hidden Output
layer layer layer

Fig.5 Multilayer neural network structure.

We use the back propagation algorithm to
minimize cost function E. Let AWy be the increment
of output weight and Wy be the updated weight
values., Then, the steepest descent method gives the
following waight updating algorithm.

Wiglk+1) = W(k)+aW g+al Wlk)-Wg(k-1))

E

AWy = "'IT“,—;‘ = n 8 OUT, (6)

where n is the learning rate and « is the monentem.
Similarly, the weight of hidden layer W3 can be
updated by the following steepest descent algorithm.

Walk+1) = Wilk)+aW z+ral Wilk)-Wilk-1))

AWs = g = 01’ (et )TGWWOUT: (D)

We use the activation function multiplied by a
constant since output of activation function is
restricted by one. In order to train neuro-controiler,
we define the cost function for control as follows.

Ec= -5 ¥ (dx - OUTW® ®)

where dyx is a reference signal. In indirect control of

nonlinear plants using neural network, the weights of
the neural controller are adjusted by backpropagating
the control error between desired value and plant
output through the neural network for identification.

In our learning algorithm, the momentem is also
used in updating of weights to further improve the
converging speed. Generally, the following heuristic
learning rates and monentem is used. 1) Learning
rate and momentem should be kept positive less than
one. 2) If error increases, then both learning rate and
momentem should increase to speed up the learning.
3) If error decreases, then both learning and
momentem should decrease. 4) If parameters are
overadjusted and the error increases, then parameters
set to a constant value. This heuristic algorithm can
be written as following equations.

nl, error(E) > el
n =
n2+|E|, error(E) < el
9
[al, error change(ME) > e2
q =
a2+|AE], error change(AE) < e2

where E is the difference between reference input and
plant output and nl, w2, el, e2, «1 «2 are constants.

4. Simulation and results

We simulated the line of sight stabilization
system to see how angular position and angular
velocity behave. The gimbal and gyro dynamics
transformed to discrete time system with sampling
time (A¢#) 0.01 second can be described as follows:
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xi(k+1) = xy(k)+At xz(k) vilocity
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(a)
where x,(k) is the angular position of LOS, xz(k), . [

the ‘angular velocity of LOS, xi(k), the gyro pick off b

voltage and x4(k), the voltage rate of gyro pick off. b

Design specification of LOS stabilization system b
is that angular velocity in azimuth is greater than
.10/sec and in elevation greater than 40/sec. Plant

output of unit step response using lead lag controller oo a0 o 0 30 0 Joo 80 %0 iomo
is plotted in Fig.6. Fig.7 shows reference signal and piot of u2.dmive Hre 12
angular velocity of LOS using neural controller. The
neural controller is composed of an input layer, a
hidden layer and an output. layer. The 'number of Fig.7. Angular velocity of LOS using neural
nodes are 3-10-1. The learning rate is initially chosen controller. (a) from the begining

to be 05 and momentem 0.2. The neural controller (b) after 20 seconds.

leaned the contol action and adapted plant dynamics

gradually after long time. [From the comparison of Fig

7. and Fig 8., the neural controller with learning rate

(b)

modification is superior to neural controller - with Yilocxty R —
constant learning rate in settling time and oscillation. e ref. ﬁ%ﬂgﬂvﬂ
Therfore, it is important to select learning rate and
momentem in order to obtain satisfactory performance. P < J/
The adjusting plan of learning rate and momentum is p-32
presented in Fig.9. Fig.10 shows plant.output using b
the neural controller and the proportional controller in
100 200 300 400 300 0 700 00 SO0 ¢
parallel slot of 2.deaire Vire 1K)
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. , ‘ x (b
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Fig.8. Angular velocity of LOS using neural
Fig.6. Angular velocity of LOS using lead lag controller with learning rate modification.
controller. (a) from the begining (b) after 20 seconds.
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Fig.9. Plot of adjusting plan of learning rate and
momentem.
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Fig.10. Angular velocity of LOS using neural
controller and proportional controller.
(a) from the begining (b) after 20 seconds.

5. Conclusion

This paper describes a neural network controller
implemented in the LOS stabilization system. As
demonstrated in the simulation results, we know that

the neuro-controller can be a substitute to the
conventonal lead lag controller in LOS stabilization
system. we realize that it is important to select
learning parameters by investigating the control
peformance such as rising time, oscillation and settling
time in the proposed neural control scheme.
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