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Abstract

A method for obtaining optimal orbital maneuvers of
a space vehicle has been developed by combining
feedback linearization method with the elegance of the
Lambert's theorem. To obtain solutions to nonlinear
orbital maneuver problems, The full nonlinear equations
of motion for space vehicle in polar coordinate system are
transformed exactly into a controllable linear set in
Brunovsky canonical form by using feedback
linearization by choosing position vector as fully
observable output vector. These equations are used to
pose a linear optimal tracking problem with a solutions
to Lambert's problem and a linear analytical solution of
continuous low thrust problem as reference trajectories.

1. Introduction

An orbital maneuver is defined as the change of the
shape and/or orientation of an orbit by using natural
and/or artificial perturbations.

The trajectory optimization problems for space vehicle
have been investigated for more than three decades by
many researchers, The methodology to solve the problems
can be classified into two types, direct and indirect
methods.

One of them is the direct parameter optimization
method in which the continuous control is approximated
by sequence of constant parameters. The solution of an
optimization problem using this method requires
mathematical programming, either linear or nonlinear.
The other type consists of indirect methods based on the
necessary conditions for optimality from the calculus of
variations application of these results in Two-Point,
Boundary-Value, Problems (TPBVP's), that also must
generally be solved numerically except for especially
simple cases. The resulting TPBVP is very hard to solve
for some problems due to its sensitivity to initial guesses
of costate variables.

For the case of indirect methods as applied to orbit
transfer, extensive practical and theoretical work was
done by Lawden [1]. Kelly [2] solved this type of TPBVP
by using a gradient method. The shooting method was
used by Melbourne [3]. McCue [4] used a quasi-
linearization method to solve the more difficult nonlinear
trajectory problem.

Since Krener[5] introduced and solved the
linearization problem with only a local change of
coordinates in the state space, many researchers have
investigated the conditions under which nonlinear

dynamical systems can be transformed locally into linear,
controllable systems. The theoretical basis for feedback
linearization method was developed by Isidori, et al. [6],
and Hunt, et al. {7). It has been applied successfully to a
automatic flight control problem of a helicopter by Meyer,
et al.[8]. It, also, has been applied to solve problems
involving robot arm manipulation{9], and position contro!
of a PM stepper motor [10].

In this work, a new approach based on advanced
nonlinear control theory in which feedback linearization is
used to develop nonlinear feedback control laws to cancel
the nonlinear dynamics resulting from a linear equivalent
model by means of state transformation and nonlinear
feedback introduced and investigated.

A linear optimal tracking scheme by using the
feedback linearization is introduced to obtain solutions of
orbital maneuver problems. The reference trajectories
were chosen an impulsive solutions to Lambert's Problem
for high-thrust orbital maneuvers and linear analytical
closed form solutions of linear system for low-thrust
orbital maneuvers.

2, Equations of Motion

Optimal orbital maneuver problems of space vehicles
have been usually studied by assuming for the dynamical
system a two point masses with only the perturbation of
two-body motion due to finite-thrust acceleration, which
was not constrained in any manner.

The dynamic model chosen in this work is a space
vehicle that moves around the earth in the gravitational
fields and a variable thrust acceleration. Both the earth
and a space vehicle are assumed as point masses.
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Fig.1 The Motion of Space Vehicle
in Polar Coordinate System
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“As shown in Fig. 1, the two-dimensional inertial
coordinate system, Oxy, with origin at the center of the
earth, is used as basic reference coordinate system. The
well-known equations of motion governing a space vehicle
thrusting in a gravitational field in a rotating local polar
coordinate system are

Ford? =ty 1t
r
ré+2r'9=u9 2

Where, r is the radial distance from the center of the
earth to space vehicle, @ is the polar angle from the

reference point, w,and u, are thrust acceleration
components in each unit vector direction respectively. we

can.write the equations of motion as a vector form,

i= f(0)+ g, @
where x = [Jcl Xy, X5,X, ]T - [r, e,f',é]’ and
u=[on]" =]

Singularity-Free Equations of Motion

Using Lagrange's planetary equations[11] may give
some benefits for solving orbital maneuvers with the
system assumed as two-body point mass. One may not
need to integrate equations of motion for pure two-body
motion but just need to propagate true anomaly. By the
way, this form of equations of motion cannot be used
maneuvers of equatorial or circular orbit due to
singularities among them. Therefore, singularity-free
equations of motion are introduced as,

2
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where P, =esinw, P, =ecosw, L=+ f, h = Jua(l-¢*),
and W =1+FsinL+P cosL.

These full nonlinear equations of motion may be
linearized with respect to intermediary circular orbit.
The linear analytical solution to the trajectory
optimization problem for the space vehicle with the
singularity-free linearized system was obtained by
Lee{12].

3. Feedback Linearization

Feedback linearization is the technique of
transforming the nonlinear system into an equivalent
controllable linear form by using state and feedback
transformations. The actual system and controlier remain
nonlinear. References [13] [14] provide detail theoretical
background about it.

Before moving into the story of feedback
linearization, let's take brief review of mathematical
preliminary. For a single-input, single-output (SISO)
nonlinear system of the form,

i=flx)+gx)u ®

y=h(x) ®
where a vector functions, LR" —> R", g.R" ->» R", are
C”vector fields and A R" — R" is a C” scalar function,
the Lie derivatives of h(x) along the direction of vector
[({) is a scalar function defined as

Lh=Vh f m

The Lie derivative may be taken recursively,
L /"h =h

Lh=L L Ry =V(L  h)-f  fori=1,2,.. (8)

The Lie bracket of [ and g is a third vector field
defined as

[fg]=ve/-Yf¢ ®

The Lie bracket [ £ ,g] is usually written as ad/g. The
Lie bracket may be defined recursively by

adg=g
ad/g=fad/"g] foriz12,... 10)

Relative Degree
Let's consider a single-input single-output nonlinear
system in Eqgs. (5) and (6) with dimension n. There exists

an output function s(x) with relative degree x at a point

x, if and only if the following conditions are satisfied:

a) matrix [g(x,),ad, g(x,)-.-,ad* ' g(x,)]
has rank x, 11)

b) distribution A= span{g(_{),adfg(g),..‘,ad/"zg(‘g)}

is involutive near x = x,. (12)
The relative degree, x, is characterized as the
number of times one has to differentiate the output
function in order to have the input u appear explicitly, If
there exists an output function A(x) with relative degree

x and the dimension n is equal to relative degree, then
the system can be fully feedback linearizable.

The idea of relative degree can be extended to multi-
input, multi-output nonlinear systems as a form,

L= f(x0)+gx)u (13)
= h(x) (14)
where %, f(x) and g(x) are nx1 vectors and y, A(x), and

u are mx1 vectors. The MIMO nonlinear system of the
form (13) and (14) has a set of relative degrees

{x,y ...., X} at a point x, if

L, L rh(x) =0 (15)
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forall 1<j<m, forall 1<i<m, forall k <x,~1, and for

all x in a neighborhood of x, and the m x m matrix.
L Ly () - L LR

Ly Ly (D) - Ly L (@)

E®= 16)

LoLy b () - L Ly, (2)
is nonsingular at x,.
The matrices (11)
controllability matrix, {B, ié,....,d"'g} in linear control
theory.

and (16) are equivalent to

The feedback linearization procedure can be
summarized as,
u=a(x)+B(x)v
E= g0 =, ;o a7
1= 2+ gu T i=Az+Bv
y=hx

The process of feedback linearization is illustrated in
(17). A nonlinear equations should have the form of
Eq.(13) to be transformed into the controllable linear one
by using feedback linearization. If we obtain a proper
nonlinear change of state variables defined by ®(x), a

nonlinear feedback function a(x), and a linear invertible

change of coordinates in the input B(x) such that the

input/output behavior of the system is linear and
controllable, then Eq.(13) can be transformed into the
form,

t=dz+ B0 as)
where z and v are new state and control variables

respectively, and 4 and B are this constant system and

control matrices, respectively. This type of
transformation is exact, and the control obtained from the
system is directly applicable to the nonlinear system
without any internal modifications.

For the mathematical model in hand, the output
relation, X=h(£) is selected as position vector with

assumption that position variables are fully observable.
The relative degrees of the system is {2,2}, i.e. sum of
relative degrees, k=4 which is equal to system dimension.
Therefore, the model is fully feedback linearizable.

A matrix form of the equations of motion which is the
canonical form for feedback linearization is

4=z (19)

Zz=£1(£1:£z)+§2(£|slz)! (20
where

z,=[r,0]; Z; =[f’é]r. (21)

If we let new control variable,

L=[(212,)+8 (21,24 22)
then, Equations (13a) and (13b) reduce to

(23)

=2,

ih=v. 29
The input transformation is
£=—gz(z.,zz)"fz(z.,zz)+gl(z.,zz)"g (25)

and state transformation is
zZ=Xx

where g, (z,,2,) should not be singular.

We can write Eqs.(23) and (24) explicitly as so-called
Brunovsky canonical form,

0 Iz 0fv
- [0 Iz i 26
E'-“-q-'[g QL]J’M[U:] -

where z=[z,",2,T".
4. Lambert's Theorem

For the two-body, two-point, boundary-value problem,
Lambert gave a remarkable theorem that the orbital
transfer time depends only on semi-major axis, the sum of
the distances of initial and final points of the arc from
center of force, and the length of the chord joining these
points. i.e.,

JRG, —t)=F(a, r,+1, ¢) @0

where 1, —1, is thé time required to describe the arc from

P, top, The geometrical configuration of the theorem is
shown in Fig. 2.

[i~]

Fig. 2 The Geometry of the Lambert's Problem

Lambert's theorem for elliptic orbits was proven
analytically by Lagrange. The Lambert's theorem can be
expressed as

B, —4,) = a*[(a — sin @) ~ (B —sin B)) 28)

where £, ¢, is the time to traverse the arc from p, top,, p
is the gravitational parameter, a is the semi-major axis of
the transfer orbit, and & and B are variables defined as

’a=25in"(J-—T—) and |3=2sin-‘(,}"") (29)
2a 2a

where 5 = (5 +r, +c) is the semiperimeter of the triangle
Oplpz.
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For a given transfer time Af, orbital elements may be
obtained by Lambert's theorem. A semi-major axis can be
obtained by solving,

f(a)= it - at[(a —sin &) - (B—sin B)]. (30)
using a bi-section or Newton-Raphson iterative method.
For the Newton-Raphson method, )
The bisection method in generally more stable than the
Newton-Raphson method. Once the semi-major axis is
found the eccentricity of the transfer orbit may calculated
from o+p

(s—r)s-r)sin*(3EE)
4 2 (1)

c? !

et =1-

Next, the true anomalies at the ends of the chord may
be obtained by using the familiar orbit equation,

1_ 2
el (32)
(1+ecosv)
5 Linear Optimal Control

. A linear optimal control problem [15] may be
formulated by using standard procedures from the
calculus of variations.

Linear Tracking Problem

A linear regulator problem is generalized into a linear
tracking one in which the desired value of state vector is
not the origin. That is, it is desired to find the control in

such a way as to cause the output z(¢), to track or follow a

desired output state r(f). At the same time, it ought to

minimize the scalar functional termed the performance
index,

I =5[22 T8 [0~ 2]

+ ’}J‘I’/ {[Z‘K]rg[z— r]+g'Ro}dt 33)

where z, is the desired final state and §/ is a positive
semi-definite matrix of weights on final state error. Also,
g and R, respectively, are a positive: semi-definite

we?ght'mg matrix on the state and a positive definite
weighting matrix on the control, during the maneuvers,
subject to the dynamic constraint equations,

(1) = A2(1) + Bu(s). (34)
The Hamiltonian for this problem is

Hes{le- gla-rvo Rof 2 (424 80) (@)

and necessary conditions for the vanishing the first
variation of the performance index are

i 22) - -ga-a1eg: (36)
0z - - -
2Ry B @

The Euler-Lagrange Eqs. (34) and (36) along with initial
conditiogn for state variables and final conditions for
costate variables,

Me)=8,20)-5 2y (38)

from the transversality condition define a standard linear
TPBVP. This type of problem can be solved by using a

"sweep method." The solution for A(?), is of the form,
Aty = E(0)x(0) +e(1), (39)

where E(r) and e(r) are nxn and nx1  matrices,
respectively, which satisfy the differential equations,

E=-EA-A"E-Q+EBR'B'E, (40)
and

é=-A"e+EBR'B e+0r, (41)
subject to the boundary conditions,

E(t)=5, (“2)
and

e(t))=-5 z4. (43

Egs. (40) and (41) may be integrated backward from the

final time to find A(z,). Then, Eqs. (34) and (36) are
integrated forward to obtain the solution.
5. Results

The example chosen in this work is the orbital
rendezvous problem between neighboring two low-earth
circular orbits in the same orbital plane. The problem is to
find the trajectories and control law that minimize AV
required for the rendezvous. Its boundary conditions in
local polar coordinate system are shown in Table. 1.

The rendezvous time is the same with coasting time
required by an intermediary orbit to reach from the initial
to final polar angle. The intermediary orbit was taken as
the average of the initial and final circular orbit.

Tablel. Boundary Conditions

Initial Final
Conditions Conditions
Radius (km) 6778.0 7378.0
Polar Angle (rad) 0 2.949606
Radial Velocity (km/sec) 0 0
Angular Rate (rad/sec) 1.131400E-3 9.962324E4
Time (seconds) 0 2782.Q26

This example gives the solution orbit to Lambert's
problem which is close to fundamental orbit defined as an
orbit connecting two spatial points with minimum
eccentricity.

The solution orbit to Lambert's problem for the
example in terms of orbital elements is given in Table 2.

Table2. Lambert Orbit

Orbital Elements

Semi-Major Axis (km) 7078.033
Eccentricity 0.042581
Inclination (deg) 0.0
Longitude of the Ascending Node(deg) Not Defined

Longitude of Argument of Perigee(deg) -5.6684
True Anomaly at t = 0 (deg) 5.6684
True Anomaly at t = 2782.026 (deg) 174.6684

Lambert Orbit Follower

A numerical solution to the nonlinear TPBVP has
been obtained using standard shooting methed for the
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example as basic reference to compare the solutions from
other methods. The time histories of thrust accelerations
and state variables for nonlinear and Lambert orbit
follower are shown in Figs. 3 through 7. Also, Lambert
orbit is obtained using Lambert's theorem and plotted to
show how closely the solution from new method follows it.

An optimal linear tracking by using solution to a
Lambert's impulsive thrust TPBVP is devised as a
reference orbit so that the feedback linear system tracks
the solution trajectory. That is, "Lambert orbit follower"” is
introduced. A time-varying Q-matrix that weights the
state variables in performance index was used to obtain a
control law as thrust-coast-thrust shape and avoid steep
peaks at the both ends. The weighting matrices for
optimal linear tracking problem are selected as

Q1) = (1) x Diagl9x10™",7.4x107¢,3.53x10°,8.0 10

S, = Diag[1x10°,3x107,0.7,0.7], and R= Diag[1,1]

where a time-varying scalar function, &(¢) is shown in Fig.
8.
Total cost to each method is shown in Table 3 in terms

of AV. 1t shows that the Lambert orbit follower method
requires less cost than continuous thrust solution,

Table 3. List of total costs, AV for Each Method.
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Fig. 5 Time histories of radial positions.

NONLIN
= = lam
LAMFOX

4 500

1000

1500

2000

2500

Methods AV (km/sec)
Lambert's Problem (Impulsive) 0.321066
Lambert Orbit Follower 0.418849
Nonlinear Optimal Solution 0.489265
Linear Optimal Solution 0.493580
Linear Trajectory Follower 0.585527

AV for Lambert's problem is that corresponding to two-
impulsive solution and obtained geometrically. As shown
in Fig. 4, total thrust acceleration obtained from Lambert
orbit follower for midcourse remains almost zero. In other
word, it behaves like thrust-coast-thrust solution.

e U ML
- = = cunLAMP -
UTHNL
) e« UTHLAM? .

©
«
T

e
w

13

THRUST ACCELERATION {W/SEC2)
3

L] 500 1000 1600 2000 2500
TIME (3EC)

Fig. 3 Time histories of thrust accelerations.
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Fig. 4. Time histories of total thrust accelerations.
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Fig. 7 Time histories of angular rates.
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Fig. 8 Time histories of scalar function, £(¢).

Linear Trajectory follower

The full nonlinear singularity-free Lagrange
Planetary equation was linearized about the intermediary
orbit and obtained the linear analytical solution with the
linearized system equations. This solution is a good
approximation of nonlinear solution for the orbital
maneuvers between neighboring orbits with reasonable
maneuver time. Therefore, a nonlinear solution that
tracks this linear solution as in a guidance problem was
obtained the system. Weighting matrices are selected as
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()= 6(t)  Diagl9.13x10,2x107%,3.2x10%,1.333x10°%]

S, = Diag{1x10%,3x107,0.73,0.73], and R= Diag{1,1]

where a time-varying scalar function, £(t) is shown in
Fig. 8. Results from the three different methods are
presented in Figs. 9 through 12, and linear trajectory
follower was reasonably good as far as linear and
nonlinear solution in state variables. Even though it

requires little bigger AV, It requires reasonable amount
043
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Fig. 9 Time histories of thrust accelerations.
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Fig. 12 Time histories of angular velocities .

of AV as it is shown in Table 3. Thrust acceleration of
the linear trajectory follower, however, shows some
deviations from both linear and nonlinear solutions at the
both ends.

6. Conclusion

The feedback linearization method has been
combined with solutions to Lambert's Problem and with
linear analytical solution to obtain methods for solving
low-thrust, low-earth, orbital maneuvers.

As expected, the Lambert orbit follower method
produced a solution that is competitive with the two-
impulse solution and the linear solution follower method
produced a trajectory that requires reasonable amount of
total velocity magnitude change. Although not exactly a
thrust-coast-thrust trajectory, the Lambert orbit follower
solution is very similar and corresponds to a total velocity
magnitude change less than that for the continuous
thrust optimal solution. Solutions using both methods are
relatively easy to obtain.
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