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Abstract

The main difference between a linear system and a
nonlinear system is the existence of direct interactions
between input signals. These interactions will be classi-
fied into three types, (1) self-interaction among different
order terms of control signals, (2) static mutual interac-
tions between the control signals, and (3) dynamic inter-
actions through the coefficient vector fields of the control
variables. In this paper, we will show that interactions
of type (2) and (3) can be avoided by applying an ap-
propriate dynamic compensator, while the interaction of
type (1) is fatal.

1. Introduction

If the number of inputs is greater than or equal to the
number of states, almost the all control problems will
be trivial or at least easily solvabie even if the system is
highly nonlinear. Let us call such a system a homeomor-
phic system. We have shown that a linear controllable
system can be always decomposed into homeomorphic
subsystems with “virtual inputs” and the pole assign-
ment problem will be reduced to the trivial pole place-
ment problems for each homeornorphic subsysrem. Such
an observation has motivated us to study the decomposi-
tion problem of nonlinear systems. Up to now, we have
shown that a nonlinear system can be decomposed to
the fuil-controlled subsystems under a quasi-coordinate.
Here a system which is attainable by using oaly the co-
efficient vector fields of input variables has been called a
full-controlled system and if the system is linear, a full-
controlled system is nothing but a homeomorphic sys-
tem. in this paper, we will show that in some cases, a
nonlinear system can be further decomposed by apply-
ing a dynamic compensator. A dynamic compensator
can synchronize the input signals to avoid the direct
interactions among the input signals and consequently
an augmented system admits the further decomposition.
The interactions among the input signals can be classi-
fied into three categories, (1) self-interaction among high

order terms of control signals, (2) static mutual interac-
tions between the control signals and (3) dynamic inter-
actions through the coefficient vector fields of the control
variables. It is shown that the interactions of type (2)
and (3) can be avoided by applying an appropriate dy-
namic compensator, while the interaction of type (1) is
fatal. A sufficient condition for the existence of the self
interaction (1) is derived and it is shown that the interac-
tions (2) and (3) can be avoided by applying a dynamic
compensator.

2. Decomposition under Quasi-coordinate
Suppose the system can be described by the following
nonlinear differential equation.

z= flu,2) (1)

Here z(t) € R" is the state vector and u(t) € R" is the
input vector. And suppose that f(u,zr) is an analytic
map from R"™ x R™ to R™ and it can be expanded as
follows

flu,z) = f2z) + Fz)u+ e+ (2)

where ultl is a vector of which elements are k order terms
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of the elements of u, ulFl = (u¥, .. and
f',i=0,1,... are analytic matrices.

Let X be a vector field and D be a distribution on R".
D is called X invariant if for any vector field Y € 7, it
holds that [X, Y] € D. Let L* be a distribution gen-
erated by the vector fields f7, j = 1,... and it will be
called the input distribution. Let Ly be the smallest
involutive distribution which contains L% and f° invari-
ant. As is well known if at zo, dimLo(z) = n, then the
systemn is strongly attainable at 9. The system which
satisfies dimL¥(z) = n where L¥ is the involutive closure
of L* is called a full-controlled system. In the following
we will assume that the system is strongly attainable at
almost all point z € R™. Note that the set of singular
points at where the system is not strongly attainable is

the invariant set.
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Now let y = ®(z) be a change of variables where @
is an analytic map from U, a neighborhood of zp € R”
to V C R", a neighborhood of y; = ®(zg). If & is
nonsingular at zy, that is 9®(z.)/dz is full rank, then &
can be regarded as the local coordinate transformation.
Let us consider the next system.

{ = (3)

o = I1".
This system is not feedback linearizable at the origin
because the linear approximation of this system at the
origin is not controllable and the necessary condition of

feedback linearizability is not satisfied. However if we
apply the change of variables,

3

1=
y2 = T2 4)
v =3z,%u

the system is transformed to

{ w7y 5)
Y2=Y1-
This means that the system is linearized formally by the
feedback transformation (4). The trick is that the trans-
formation (4) is singular at the origin and never satisfy
the conditions for the coordinate transformation. How-
ever, such a transformation will be convenient for the
analysis of nonlinear systems.
Definition 1

A change of variables y = ®(z) will be called a quasi-
coordinate transformation at zgy if ® is homeomorphic at
almost all points in U, the neighborhood of z4. y will be
called a quasi-coordinate.

It 1s known that an involutive distribution D can be

written as,

D, =span{d/dz,,...,8/0z4}
under an
appropriate local coordinate (zy,...,Z4,...,Zn) in the

neighborhood U of the point zg, if D is nonsingular at
zg. Let us consider the case where D is singular at zg.
The integer defined by,

k = max dim span D(z)
el

will be called the generic dimension of an analytic dis-
tribution D. Let D, be the set of singular points of D,

D, = {z € Uldim span D(z) < k}

Definition 2

Suppose an analytic distribution D of generic dimen-
sion k is defined in the neighborhood U/ € R™ and D,
is the singular set of D in U. D is called nonsingularly
covered by v covers or simply it has nonsingular cover
at zg if there exists v open sets @',..., 0" and v quasi-
coordinate transformations ®! ... ®* which satisfy the
following conditions.

(i)
> 0'+D,=U
i=1

(ii) ®* is analytic homeomorphism from the open set O
to the open set V' C R™. There exits a nonsingular
distribution defined on the closure Vi of V* which
satisfies that at every z € OF,

span D, (®(zx)) = span (®).D(z).

(i) Every vector field X € (®*), D, there exist analytic
functions o'y, ..., a'; such that

k
X(p) =) a'(p)Y*p)
Jj=1

where Y‘,-‘ j = 1L,..., k are bases vector fields of
2

Based on this concept, we can prove the next theo-

rem.
Theorem 1

Suppose the system (1) is strongly attainable at
almost all points. There exists a local quasi-
coordinate system under which the system can be

decomposed to the following form.

f1 = filur,21,...,2) u; = u(real input)
3= folua,22,...,2) ua=12
zg = folug, 74) Uy = 241

(6)
where z;(t) € R™ and 3_!_, n; = n and each sub-
system is full-controlled.

We will call such a decomposition the full-controlled
virtual decomposition and call u; ,j = 1,...,q as
virtual inputs. Note also that we will call a decom-
position of the form (6) where each subsystem is
not necessarily full-controlled as a virtual decompo-

sition.

— 569 —



Example 1

Consider a bilinear system,

j’.‘l = Iau

9 =z +xu.

We can easily show that the distribution D =
{z28/8z) + z,8/0z,} can be nonsingularly covered
by 4 covers. For instance, on R} = {(z1,z2){z; >
8]z2|}, the quasi-coordinate transformation,

Y1 =2
— a2 2
Ya =27 - 23

will transform the system into the full-controlled
virtual decomposition form.

n :(1+u)\/y15+y2 8)
o = =201V + vz

3. Interactions and Compensators

Generally, the virtual full-controlled decomposition
for a linear control system,

z = Az + Bu 9)

Is coincides with the Hessenberg type decomposi-
tion.

il = Bo’u + Auzl + ...+ Alqliq

i2:A21.’El+...+A2qu (10)

Ty = Agg-1T¢-1+ Agez,
where z;(t) € R™ and u(¢) € R". The characteris-
tics of this decomposition are as follows.
(L1) r=n; <ni <nigqy i=1,...,¢-1
(L2) rankA,-',-_l =n;
However for a nonlinear system, these properties are
not satisfies due to the coupling among the virtual

inputs signals. Such interactions can be classified as
follows.

(N1) self interactions due to the existence of higher
order terms

(N2) static interactions among the virtual input
signals

(N3) dynamic interactions through the coefficient
vector fields

Now we will define the interactions as follows.
Definition 3

In the full-controlled virtual decomposition (6), if
nj_; < n; for some j € (1,2,...,q), then we will
call that the subsystem j has the interactions among

the virtual inputs.

The examples of each interactions can be given as

follows.
(N1)
il =Uu
11
{ ig = u3 ( )
(N2)
i‘l =u
Iy = uyuy (12)
.”C3 = U2
(N3)
T = up
2.,‘2 =ZT1U2 (13)
T3 = Tous
Now consider the system,
Uw=v
14
z= f(u,z) (19)

defined on R™*" and define a series of distri-

bution {H;}, 7 =1,... as follows.
Ho = { 8/8uy,...,8/0u, }
H; = { [f(u,2)0/8z, H;_1] + H;_1] }

(15)
For the existence of the self interactions, we
can prove the next theorem.
Theorem 2

For the system (1), if there exists some j €
(1,...,q) such that

(Hi—1, M;] ¢ H;

then there exists the self interactions in the
virtual subsystem j.

Now let us consider the static interactions
(N2). It will be clear that this type of inter-
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actions can be reduced to the dynamic inter-
action (N3) by applying a dynamic compen-
sator. Indeed, for the system (12), applying a
dynamic compensator,

=1
U =y

we will get the augmented system

B =0

%’1 =un (16)
Ty = Yruz

I3 = usy.

This shows that the static interactions can
be transformed to dynamic interactions (N3).
Hence it will be suffice to study the dynamic
interactions. For this purpose, let us consider
the next 2 inputs system,

z= f(z) + 91(z)ur + g2(z)ue. an
By applying the dynamic compensator,
h=n
(18)
yp = Yp-1
we will get the next augmented system.
= 21 =g1{z1, .- Zn, Yp) U2
(19)

yP:yP—l ‘%P:gp(zp—lv"':znvyp)
EP = GP+1(yp’zpr'- .,z,,)

where %, = (Zp+1,--.,2n)7 and we have as-
sumed that there 1s no self interactions. The

equation (19) shows that if we select p ap-

propriately, we can avoid the dynamic inter-
actions. It will be easy to extend this result
to the general system with motve than 3 inputs
and we will get the next theorem.

Therem 3

If there exists no self interactions in the system
(1), then we can get the decomposition with
the properties (L1) and (L2) by applying an
appropriate dynamic compensator.

This is almost same as to say that if the system
has no self interactions then the system is for-
mally linearizable (linearizable under a quasi-
coordinate).

4. Conclusion

In this paper, we have shown that the nonlin-
ear system has nonlinear interactions among
the input signals and the dynamic compensator
can play an important role to avoid such in-
teractions and to get the finer decomposition.
based on this results, we can define the mea-
sure which shows how fine the decomposition
is. Such information about the structure of the
system will be a great help to design controllers
of the nonlinear systems.
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