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Optimal Rehabilitation Model for Water Distribution Systems
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1. Introduction

The primary goal of all water distribution systems is the delivery of water to
meet demands on quantity and pressure. Unfortunately, as a system ages, its ability
to transport water diminishes and the demands placed upon it are increased. In
addition to unsatisfactory performance of a deteriorated network, there are direct
economic impacts of a failing system. It has been reported that for some utilities
90% of the total budget is for energy required for pumping. Older systems have
reduced carrying capacity due to corrosion and tuberculation and are more
susceptible to leaks and breaks resulting in losses of water and requiring time and
money to repair. Thus, the rehabilitation, replacement, and/or expansion of an
existing system to meet current and future demands of flowrate and pressure head
has become a topic of interest.
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Since it is unrealistic and not necessary to rehabilitate and/ or replace all pipes
in an existing water distribution system, a methodology should decide which pipes
in the system should be rehabilitated and/or replaced so that the demand and
pressure requirements can be satisfied and the total cost becomes the minimum.
Basically, the problem is to determine the trade-offs among the following decisions:
1) replace pipes, 2) rehabilitate pipes, 3) increase pumping power, and 4) do nothing.
The associated costs are evaluated for each decision so as to find the optimal
combination of these decisions for an entire pipe network accounting for the optimal
trade-offs. The objective of the model is to minimize the overall cost associated with
the decisions. The overall cost includes the replacement cost (f1), the rehabilitation
cost (f2), the expected reparation cost (f3), the energy cost (fg), and the increasing
pumping equipment cost (f5), some of which are expressed by nonlinear functions.
The major constraints in the model are the conservation of mass and energy
constraints, the water quantity demand constraints, the nodal pressure head
requ‘i'rement constraints, the pump characteristic constraints, and the non-negativity
constraints. Many of those constraints are expressed as nonlinear functions. The
decision of whether to replace (or rehabilitate) a pipe or not is represented by a zero-
one integer variable. Basically, two integer variables are required for each pipe of
the system for replacement and rehabilitation, respectively. The proposed model
formulation is a mixed-integer nonlinear programming (MINLP) problem.

2. Model Formulation

The cost functions for pipe replacement, rehabilitation, and repair are
regression equations from the U. S. Army Corps of Engineers (1983). The cost
function for pipe replacement is expressed as

£ =3 (25.26DN'"" +33.043)L N, (1)

!
where fq is in dollars, DNjand Ljare in feet. The cost function for pipe rehabilitation
is expressed as

£,=(0.418D0O™ +23.742)L R, @)

}
where {7 is in dollars, DO]' and L]' are in feet. The present value of the expected

repair cost is given by
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where r is the interest rate and p is the planning period in years. The present value

of the energy cost for single loading is given by

_ 6534.96 M, HP,
f4—§z[ (1+1)° E, } @

P
where My is the unit cost ($/kwhr) of electricity for pump k and Ej is the efficiency
of pump k. The cost of electrical equipment for pump stations is given by
f, = 2[792. 46(HP, —HP, )‘”‘] )
k

in which HPy is pumping power of the existing pump k.

The problem formulation is given as following:

Minimize (fl + f2 + f3 + f4 + fs) (6)
subject to

(1) Demand requirement: The amount of water being supplied to each demand

node should be greater than or equal to the required demand, expressed as
>q,2Q, for all demand nodes i (7)

jel,

in which [; is the set of pipes connected to demand node i; g; is a continuous
variable representing the resulting flow rate in pipe j; and Q; is the required
nodal demand at node i.

(2) Pressure head requirement: At each demand node of the water distribution

system, the pressure head (h;) being supplied at the node should be greater than
or equal to the minimum allowable pressure head (H;) and less than or equal to
the maximum pressure head (H:), i.e.,

H <h <H, for all demand nodes i (8)

(3) Conservation of energy constraints: For each primary loop, i.e., an independent

closed path in a water distribution system, if Js and K represent the sets of pipes
and pumps in primary loop S, respectively, then the energy conservation

equation can be written for pipe sections in the loop as follows:
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(4)

®)

D Ah = Y PH, for all Jg, K 9)

jel, keK,

in which Ah; is a continuous variable representing the resulting head loss in pipe
j and PHy is a continuous variable representing the pumping head of pump k.
In case of no pump in a loop, the energy equation (9) states that the sum of the
energy losses around the loop equals zero. If there are F fixed grade nodes, F-1
independent energy conservation equations can be written for the pipe sections

along the path between any two fixed grade nodes as follows:
AE, =Y Ah - Y PH, for all J, Kp (10)

jelg keK g
where AER is the difference in total grade between the two fixed grade nodes,
and Jp and K represent the sets of pipes and pumps in path R connecting the
two fixed grade nodes, respectively. Eq. (9) is a special case of Eq. (10) where
the difference in total grade (AE) is zero for a path which forms a closed loop.

Decision constraints: These constraints are applied to the model to eliminate the

possibility of simultaneously replacing and rehabilitating the same pipe.

N, +R, <1 “ for all pipe j (11)
in which N; is a binary variable with either a value of one representing the
replacement of pipe j or zero otherwise, and R; is a binary variable with a value
of one representing that pipe j is rehabilitated or zero otherwise.
Hydraulic constraints: The Hazen-Williams equation for each pipe in a water

distribution system is given by
.63 0.54
_AC, AD** Ah{

YLy

for all pipe j (12)

in English unit where AD; is a continuous variable representing the actual
diameter of pipe j after the decision is made and L; is the length of the pipe j.
The actual roughness coefficient for pipe j after decision, ACj, is given by the
following equation:
ACj= COj[1- (Nj+ R)] + CRjR; + CN; N; for all pipe j (13)

in which CO; is the Hazen-Williams roughness coefficient in old pipe j, CR; is the
roughness coefficient in the rehabilitated pipe j, and CN;j is the roughness
coefficient in the replaced pipe j. Eq. (13) states that, if N; or R; = 1, then ACj
equals CNjj or CR; respectively, otherwise, ACj = CO;. In other words, if either a
replacement or a rehabilitation is performed for pipe j, then the roughness of
pipe j is the value for the replaced pipe or the relined value. Otherwise, the
value of the roughness is the same as that of the existing old pipe. Similarly, the
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value of the actual pipe diameter after decision, AD;, is given by the following

equation:

ADj = DO; (1 - Nj) + DN; Njfor all pipe j (14)
with a bound constraint

DN, 20 for all pipe (15)

where DQ; is the diameter of original pipe j and DN; is a continuous variable
representing diameter of the replaced pipe j.
(6) Pump characteristic constraints: For each pump in a water distribution system,

the pumping power is defined by:
Hp, - 14 P
550
where HPy is a continuous variable representing the useful pumping power of

for all pump k (16)

pump k; v is the specific weight of water; and qy _is the flow rate through pump
k. The constant pump horsepower, HPx, can not be smaller than the existing
constant horsepower, HP,, expressed as

HP, > HP, for all pump k (17)

which defines a lower bound on the decision variable HP.

(7) Integer (binary) variable characteristics:
N;=1[0,1]; R;j=[0,1] for all pipe j | (18)

3. Solution Procedure

The proposed model formulation is a mixed-integer nonlinear programming
problem. Kim (1992) developed an implicit enumeration algorithm to find the
optimal combination for the 0-1 integer variables which represent the optimal
rehabilitation plan for the existing water distribution system. Figure 1 shows the
incorporation of the program solvers. It shows the connection between the branch
and bound (integer) master problem and the nonlinear subproblem. The proposed
algorithm solves a nonlinear programming subproblem for each branch node in the
enumeration procedure. The integer master problem provides fixed values of the
binary variables to the nonlinear subproblem, and the nonlinear subproblem
provides the optimal objective values to the master problem. Figure 1 also shows
the interfacing of the hydraulic simulation model, KYPIPE by Wood (1980), and the
nonlinear solver, GRG2 by Lasdon (1983), in an optimal control framework. Based
on a set of initial values for the continuous control variables, DN]' and HPY, the

simulation model is executed and the resulting values of nodal pressure heads, h;j,
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are transferred back to the nonlinear model.

( Fixed values of \
Master Problem integer variables
o L Optimal
objectives

NLP Subproblem }

Values of
nodal heads

Values of new
pipe diameters
pumping powers

Hydraulic Simulator |

o /

Figure 1 Incorporation of the Program Solvers

4. Application to an Example

Figure 2 shows an example network which consists of 17 pipes and 12
junction nodes. The Hazen-Williams roughness coefficients in all the pipes were
assumed to be 50 in order to simulate an old system which does not meet the water
demand and pressure head requirements. The Hazen-Williams coefficient in a new
pipe was assumed to be 130, while that of a rehabilitated (relined) pipe is 100.
Pressures at demand nodes were constrained to be between 40 and 120 psi. Table 1
lists the optimal decisions for all the pipes and Table 2 is a list of the minimum costs
for example two. It should be noted that the pipe repair cost and the pumping
energy cost are for a 20 year time period with all costs converted to present worth.

One way to calibrate the results of this example is to examine all possible
decision combinations of the integer variables. However, there are more than 129
million combinations (37 = 129,140,163) of possible decisions for this example with
17 pipes. A procedure which selects a possible system configuration utilizing a
random number generation. One thousand possible system configrations were
examined by randomly selecting 0 or 1 for the integer (binary) variables. The
minimum total cost obtained from the 1000 cases is $12,208,387. This cost is $248,342
higher than the cost $11,960,045 obtained from the new methodology presented in

this paper. Table 3 shows the comparison among those costs.

— 540 ~



0%

R

1950 HP

Figure 2 Example Water Distribution System

Table 1 Optimal Decisions for All Pipes and Pump

Pipe Diameter (inches)

Component Decision Before Decision After Decision
pipe1 reline 24 24
pipe 2 reline 18 18
pipe 3 as is 18
pipe 4 as is 6
pipe 5 as is 15
pipe 6 as is 15
pipe 7 as is 15
pipe 8 as is 12
pipe 9 as is 9

pipe 10 as is 12

pipe 11 reline 12 12
pipe 12 replace 15 17.22
pipe 13 replace 15 10.59
pipe 14 as is 15

pipe 15 as is 15

pipe 16 as is 15

pipe 17 as is 9

~_pump as is 1950 HP
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Table 2 List of the Optimal Costs

Cost ($)
Replacement Cost 774,061
Rehabilitation Cost 444,153
Repair Cost 154,624
Energy Cost 10,587,207
Pump Equipment Cost 0
Total Cost 11,960,045

Table 3 Comparison of the Optimal Costs

Total Costs ($) out of the 1000 Total Cost ($) from the New
Random Number Generation Methodology
11,960,045
Best 12,208,387
Second Best 12,281,031
Third Best 12,312,632

5. Conclusions

A new methodology has been presented for determining the minimum cost
rehabilitation and replacement of pipes in water distribution systems. The
developed model is able to determine which pipes in an existing water distribution
system should be rehabilitated and/or replaced so that overall cost is minimized
and all constraints are satisfied. The problem is formulated as a mixed-integer
nonlinear programming problem. An implicit enumeration procedure using a
branch and bound algorithm was used to find an optimal combination of the binary
variables, which represent the optimal rehabilitation plan for the existing water
distribution system. The nonlinear subproblem size is reduced by interfacing a
hydraulic simulator with a nonlinear solver and by using a penalty method.

Although global optimality cannot be guaranteed, the results from the
applications demonstrate the model's ability to find optimal solutions. ~The
comparison of an optimal cost obtained from the model with the minimum cost
obtained from the 1,000 random system configurations supports the optimality of
the solution. The concept of the solution methodology in this paper is new for
solving the optimal rehabilitation and replacement problem for water distribution
system components. However, the fact that there can be numerous alternate optima

should raise concern among practicing engineers and prompt more research efforts.

— 542 —



6. References

Kim, J. H., Optimal Rehabilitation/Replacement Model for Water Distribution Systems,
Ph.D. Dissertation, The University of Texas at Austin, Austin, Texas,
December, 1992.

Lansey, K. E., Basnet, C., Mays, L. W., and Woodburn, ]., "Optimal Maintenance
Scheduling for Water Distribution Systems," Civil Engineering Systems,
England, 1992.

Lasdon, L. S. and Warren, A. D., GRG2 User's Guide, Department of General
Business, The University of Texas at Austin, Austin, Texas, November, 1986.

O'Day, D. K., "Organizing and Analyzing Leak and Break Data for Making Main
Replacement Decisions," Journal of the American Water Works Association, Vol.
74, No. 11, pp. 589-594, November, 1982.

Shamir, U. and Howard, C. D. , "An Analytic Approach to Scheduling Pipe
Replacement," Journal of the American Water Works Association, Vol. 71, No. 5,
p. 248, May, 1979.

Sullivan, J.P. Jr., "Maintaining Aging Systems - Boston's Approach,” Journal of the
American Water Works Association, Vol. 74, No. 11, pp. 555-559, November,
1982.

U.S. Army Corps of Engineers, Engineering and Design - Evaluation of Existing
Water Distribution Systems, Engineer Technical Letter No. 1110-2-278,
Washington, D. C. 20314, may 16,1983.

Walski, T. M., "Economic Analysis fo Reliabilitation of Water Mains," Journal of the
Wiater Resources Planning and Management Division, ASCE, Vol. 108, No. WR3,
pp- 296-308, October, 1982.

Walski, T. M., "Cleaning and Lining Versus Parallel Mains," Journal of the Water
Resources Planning and Management, ASCE, Vol. 111, No. 1, pp. 43-53, 1985.

Walski, T. M. and Pelliccia, A., "Economic Analysis of Water Main Breaks," Journal of
the American Water Works Association, Vol. 74, No. 3, pp. 140-147, March, 1982,

Wood, D. ]., Computer Analysis of Flow in Pipe Networks Including Extended Period

Simulations, University of Kentucky, Lexington, Kentucky, September, 1980.

Woodburn, J., Lansey, K. E., and Mays, L. W., "Model for the Optimal Rehabilitation
and Replacement of Water Distribution System Components," Proceedings of
the 1987 National Conference on Hydraulic Engineering, ASCE, pp. 606-611,
Williamsburg, Virginia, August, 1987.

— 543 —



