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(Altered Phenotypes of The Plant Cell by Introduction
of an Antisense Heat Shock Gene)
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3 FHe=2A L FAIE VF E£F ZGH FRLEEA s A dTFE
et gy AEE XEd BE AEAES 22d dEd J88 s30e T
£ 53k olHF THE MEEL F79 mRNAS proteine] &3t wHE
o]A& Heat Shock(HS) response®t WAH3A fBHAH UcHlin er al, 1984;
Lindquist, 1986). HS Responseo] g EAMEEH AT Ritossa(1962)¢] £
8\ X Drosophila hydei d#le] A A puffinge] L2Ae|F YAPH= AL LA
FF5 A ZE o, TissieresF(1974)e] ¢Js] AF2=F Heat Shock Protein(HSP)o] =
I HAth Fe E. colidlA Apge] ¢]2717t4] & (R4 B8 2=HT 100 C A
T 52 Ao urgsdd die] @Wd(HSP)o] AAEel ¢z Ak (Schlesinger
ef al, 1982). o|E§ HS ¥-&& A RE AEA M LA, 1 7|Fe] B3
Atglo]l @&t}

1. HS gene @39 =4
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2 479 FAALE $EdNNE Bz F33] Aojdt. olw AAHY =HHH
= HSP2 &% HS gened transcriptiong&ol A FddE ez 484 ok A
A8l HS gene ¢ 5°—upstream sequenced] X &1 9+ HS element(F 8 AL <)
Ae AN F== 20]Ae nGAAn ¢ inverted ¥HE 0.2 FA4; Perisic et al., 1989)9
HS Transcription Factor(HSTF)”7} binding 3} 4 RNA polymerase7} HS gene&
Adxgoz2 AArh.  o|NE HS gened 2L HFEA7E HSTFE F4RE
(nonHS)o| M & W& FE2 SAsthr) e245A] €42 FHz dgdr. o
3@ @A 3= HSTFE phosphorylationdlsd conformationg WA A A 730 U
activator domaing& =ZA|7]& ALZ &3zt T8 Fold gy =2 2%
Wyt AR e fdx 49 FAHE T3 HSPE 97 olA % Yol @
o gt HZZEolA HSPF9 3dluel HSP70¢] HS response 332 %70 252
#A A 8= thermosensor® 2z &= ZoE AZHE R QuHCraig and Gross, 1991).
E. colisl* HSP70°] #|%3}= DnaK: E. colie) HSTFY o %9} Atz glvr}
HSzzg N AYd=Ee dAddddsle Age 98 €94 voeds « P& g
HS genes WEA7|-d 2o|=F Fr}, o3 Rde] AL AN XM
DnaK+ HS gene Y@ o] negative regulator® 243t Aoz AR,

EF HS gened translation FFd X 2dHE Aoz dxlAYct. dutz o
2 HSZA39 Zs oA HS mRNAEe] HM&d o F translation H1, o] HS2
2 W3g translation 719-9% HS mRNA9] untranslated leader region¥2] €3
AZHFA YA o] R} (Storti er al.,, 1980; McGarry and Lindquist, 1986). &
H3] Zimmerman(1989)%2 329 AAME FAF globular BAol 4 HSPL] 4 o]
FE translationTENA ZHEL ¥R

o33} o] ¥ F79 L=F FAHNY BEAFFANY FAT ¥IAE Hol
EAozE 93], HS gened g ATE %3l signal transduction I §-A=} T3]
ZHell s @& olsjrt o]Fe] FHrh olfex HSe| oIt wkg oz FEA 9
A cdFoz HEARE o HSPY 7% dd A3/t glo] gt

2. HSP9] 7%

HSPe] €471 WaA ol 2 HSPH 7% A& osig A8 hFd d77F A
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TEgich. HSPe ®e FF/H7F ¢Ed Fole Axde 54 X2 olFste] HS
71tE EXRYSL @3de S0 A G2, A & Al & HSP1109
A% #ere) Q9] 847t Ho] HS 7|7k ribosome AAtE dAHA BAI}E
Ao AARG(Nover er al,1986). =7 2&e] oA Low Molecular Weight
HSP(LMW HSP; 15-30 KDa)&°¢] €ZA|(Chou er al, 1989), mitochondira, nucleus,
ribosome(Lin et al,, 1984)2.2 o] F3le Ao=2 BuFAdr) o HSPEL <] %5
Z AEWe 2718 = BEFPAAAA Z T2 IAYE ALANIE ALE &H
o] Ar}). ¥-§Fo] HSPIE steroid hormone receptorel Ag3te] 3% hormoneel
93 B3 §A4z LEE 2Ased 7. AR HSP709) A4 dF @94
o] translation o7 Fo] mitochondriat} endoplasmic reticulume.2 &oj7te A
& E%& unfoldase® Z&gch o HSP 7712 EAF 7% cl9dx HSPo|
thermotolerancest A3 Aol P& ALE ofH1 Yt

AEAY NEANZ 2383 AT HSE A ued dAHoZ n2d d
WAlo] = =HojxE #4(“acquired thermotolerance™)-& Yarwood(1961)e] <]sj
AEoH Aoz numYrh HSPY A4 =% 4233+ #AA3 thermotolerance
9] JASH AN}HoE AXHE AL Zo HSPo| acquired thermotolerancee] =3
H Boate Aoz 299 gt B 299, A, FAuIE 27 WEgAg]
A HSPS wEA Eae AT oArld FEE Fe o3itte #E> HSPH
thermotolerance?] WAHFT AL BAFE FA¢7= dHGraziosi et al, 1980;
Heikkila et al, 1985; Roccheri et al, 1981). ©]9|o|Xx yeast, Dictystilium, chinese
hamster ovary cellslA @#9a 4L AHPYLW FA | thermotolerance= B1Z
4 A9 HLindquist, 1981; Loomis and Wheeler, 1980; Henle and Leeper, 1982). %
& e HSPe] AL wajatd & HSP70(rat cell; Riabowol er al, 1988; Lio er
al, 1991)¢} HSP104(yeast; Sanchez and Lindquist, 1990)¢] 7% thermotolerance?]
FAF G228 o7l 9tk Iy veastd FEF LMW HSPY HSP26E&
antisense gene o438t H@L AN AF&d K94 sle AgE BA KA

Budre g ABAd s ddHez ol AR & HEAAM4
HSPS 7)%e] tisfix getraidel Bd3] B Holgoz go] BEoiA L,
I FF QoM g LMW HSPol disiy 239 47 29E EYE =9 3
# gt

115



Imw & 2
1. AW %8 T2 A ¥ HS response

(1) &xZ7}d o & HS gene? 23&

Wdd FZAXE e HE By AEAEs vR7EA Z(Mansfield and Key,
1987) HSe| ¥rg3ted dFe] AZ L oyl (HSP2Z AHe)& whex, A=z
A wrEE gaEe] A gt (Hwang and Zimmerman, 1989). 32 A) o]
o8 HSPe] 717 ®ol AYHE HA HS(AES HF 2L Z)LEE Figure
164 BoRl= AAH 38° Colr}, o] soybeano|y} tomatoo] A HaFE A3} FA
BtHKey er al, 1983b; Scharf and Nover, 1982). HS message®] =X E A
38° Coll A 714 #ee BogEd(Figure 2). 23° CaA % HSP70¢ mRNAY} %3
g8 B4 gk ol g€ & AEYA HSPI07} AT ZdodA 43T 7%
< 32 5 nH ) olF sbsdtrh. e HSPITE Aoz A AL
FolAwt 23° Ceofl 483t message’} FHHE H9FETE Nuclei run on assay®
FEAE 99 v A7 o HAHZimmerman et al., 1989).

(2) LMW HSPztel $414

FZ A wAEE HSPe) 2752 Figure 3o & Jeht 9ok A9 2E BE
oj 4] ¥wA %= High Molecular Weight HSP(HMW HSP; 70KDa, 84KDa, 92KDa)3}
AEAREL 5G] BxF $4e] LMW HSP(16 - 22KDa)o] ¢F 1671H & WA S
Ak, & A ESAA YrEojx= LMW HSP# "l @uj(de 1271 o4 F9 27
71¢] LMW HSP; Mansfield and Key, 1987), 929 AX¥Xe dAH3FHQA 2E2 HSPY
FAHS VERN A gtk o)X E k3 LMW HSP-S mutigene familyo)] €8x 9%
o] Xt} (Darwish et al, 1991). o] LMW HS geneS€ 435 =<2 nucleotide
homologyZ ®.o&tr}, Figure 45 929 LMW HS gene%9] &}¢l DChspl?.5&
AbE3te] HS poly(A)RNAZHRE =L stringencyZA(65% formamide, 50° C)oll A
hybrid-selection¥t¥ in vitre translation® 53 US43 dd L RAFTh 4
Fof] mE2HA t}Al7Re] HS geneo] DNA sequence’del 4 & homologys B &)
Sequencing datas) wWEW coding sequenceTrS HIWEES W 90% o]49)
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Fig. 1. Synthesis of heat shock proteins in carrot cells as a function of increasing
temperature. Carrot callus cells incubated in the presence of 50 uCi of
29 _methionin for the last two hours of a three hour incubation at the
respective temperature. Total proteins were extracted and equivalent amounts
(100 pg) of each protein sample were seperated in 15%polyacrylamide gel.
2X amount of protein was loaded in the 40°C lane since the sample showed
a low incorporation of the lable. Proteins were visualized by flourography
after fixation and treatment with Fluorohance(Research Products International
Corp.). Molwcular Weight of standard proteins are indicated on the right and
the major heat shock proteins in carrot are marked on the left.
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Fig. 2. Accumulation of HSP17 and HSP70 RNAs in carrot callus cells at
increasing temperatures. Poly(A)® RNAs were isolated from carrot callus
cells incubated at increasing temperatures for 3 hours. 12 ug of poly(A)*
RNAs per sample was separated in a 1.2% agrose/formaldehyde gel and the
blots were hybridized with radioactively labeled DNAs from the plasmids,
pXB22 or pMON9508 containing a DChspl7.7 genomic gene and a maize
HSP70 ¢DNA respectively. The level of the accumulated transcripts was
measured by densitometry (Model 620, BioRad).
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Fig. 3. Two—dimensional analysis of the proteins synthesized in callus cells under
HS and non HS condition. The proteins labeled with 3*S—methionine in callus
cells for 3 hours during HS or non HS were resolved through 2-D
IEF/SDS-PAGE. Panel A shows the nonHS proteins and panel B shows the
HSP. Equivalent cpms of TCA-precipitable proteins (6.2 X 10° cpm) was
analyzed for each sample.
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DChsp17.5 HS poly(A)RNA

Fig. 4. DChspl? hybrid selects a family of HS mRNAs. 5 ug of a
gel—-purified 0.5 Kbp Xbal fragment of the DChspl7 clone was used to select
homologous HS mRNAs from HS poly(A)’RNAs were translated in vitro in
the presence of *S-methionine using a rabbit reticulocyte lysate. The
products from the in vitro translation were separated through 2-dimensional
[EF/SDS-PAGE. Panel A shows the translation products of the
hybrid-selected mRNAs with the DChspl7 clone and panel B shows the
translation product of total poly(A)'RNAs isolated from heat shocked callus
cells of carrot. The proteins were visualized by flurography.
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homology& e} tHDarwish er al, 1991). o]&ox LMW HSP-& antigenicity&
Hol A M= FAFEHE Yepdict, Figure 5= western blot analysis® tomato HSP17
2 A3l wEo]Z polyclonal antiserume] F<2 10712 LMW HSPo] ¥-g-3}&
AE BY@Er} ol 22 F e LMW HSPIF 87t olvzl, £+ LMW HSPA
ol = gl AeEar FAAY o)

(3) HSPS] AX el ¢tAgA

38° Cell A 15A2ke] AdFo] REFFS HSPo] WtEojx)7] A& 851, 32
A#HRF 71 L HSPo| wrEo A h(Figure 6). 12417 o]4 HS& AT shH-&d
LMW HSP2 A9 wExx] gsrort HMW HSP2 &3 HEAqHTt o %
2] So)x HSP707} autoregulation® = 71&3} fAFSHA, &4 LMW HSPeo
autoregulation®l th= 7FeA 2 2AAARAMY 7beAE g @ wEdd
HSP& HS &AMy, Fd2E 23 3olAy Hx A AA A s cHFigure
7). Soybean HSP¢ 79+ HSF HA 21 N 7hK %= HS EE nonHS 27X
HSPo| ¢1A9-& »1 a9 Key et al, 1985).

(4) Cell lined] @& HSPY 944

HSP2 tlEolAe ke cell lined] mal %3, dFWo|E RS} (Hwang
and Zimmerman, 1989). o]t Wolz LW H|Fr|THe Uelu= somaclonal
variatione 2 of7]€g o2 ol drt. Figure 814 BA= cell line k2] HSP
Fe] Fols wWHEAQ APE B3I YAAHY Aol obde] el HIUAL, protease
inhibitor® AHEdMZ= 9A Fe AFE 4S5 I GB-49 OB-4%
temperature—sensitive(ts) variant® £ @A 7]o] 33° CE A 3R-& weol o]
A AAEQ B FHeA BiE EAL BRYFE lineoltH(Schnall er al., 1988).
o] variant®] 7% B2 LMW HSP2| &Ado] 4 Hied, ts-FdFH} d4A
o] LMW HSP2] thermotolerance oA &g 384 QA

e d¥ES Tt ¢HA HBAXY LMW HSPY EAEE o834, A&
AEWeA 282 75 g o8& E°l7] 93 antisense HS genes HEAHE
of ¥, LMW HS gene®] w@& Asten A=3Arh
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Fig 5. Antibody to tomato HSP17 cross reacts with a family of LMWHSPs from
carrot. Heat shock proteins synthesized in the presence of S-methionine at
38°C were seperated in 2-D IEF/SDS-PAGE and electro-blotted onto a
nitrocellulose membrane. The blot was incubated with a tomato HSPI17
antibody (kindly provided by Dr. L. Nover) and the proteinscross reacting
with the antibody were visualized by an alkaline phosphatase reaction as
shown in panel B. The blot was subsequently exposed to X-ray film to
visualize the whole profile of HSPs as a reference. Panel A shows an
autogradiogram of the blot used for western amalysis and the proteins
cross—reacting with the tomato HSP17 antibody have been marked with
arrows. Open arrow indicated the proteins showing a weak reactivity with
the antibody so the signal was not apparent in  Panel B. Closed arrows

correspond to the proteins visible in Panel B.
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Fig. 6. The synthesis of heat shock proteins at 38 °C as a function of incubation
time. Carrot callus cells were incubated at 38 °C for 0.5 hour (0.5 hour with
labeling), 1.5 hour (last 1 hour with labeling), 3 hours (last 2 hour with
labeling) and 12 hours (last 2 hour with labeling) and the proteins labeled
with ®S—methionine were analyzed in a 15% polyacrylamide gel. An
equivalent cpm (1.1 X 1° ¢cpm) of TCA-precipitable protein per sample was

analyzed. Proteins molecular weight standards are indicated on the right.
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Fig. 7. HSPs were shown to be stable for at least 8 hours under theheat shock
and non-heat shock conditions. Heat shock proteins were labeled by
incubating carrot callus cells in the presence of *S—methionine for two
hours at 38 °C after a one hour preincubation at the same temperature. After
labeling, unincorporated ®S-methionine was removed by washing the cells
with MS" media pre—conditioned at the temperature for a further incubation.
The washed cells were used for extraction of the HSP (lane 2) or further
incubated, in the presence of cold methionine, at room temperature (about 23
°C) for 2 or 8 hours (lanes 3 and 4, respectively) and at 38 °C for 2 or 8
hours (lanes 5 and 6, respectinely) before harvesting for extraction of the
proteins. For cornparison, the proteins synthesized at room temperature were
also analyzed (NHS). The same cpm of TCA-precipitated proteins was
resolved in 15% polyacrylamide gel and the proteins were visualized by
fluorography.
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Fig. 8. Different camrot cell lines showed different two-dimensional
profiles of heat shock proteins. Total proteins extracted from
callus cells, incubated at 23 °C (panel A) and at 38 °C (panels B
through E) in the presence of **S-methionine for the last 2 hours of
a 3 hours incubation were separated through 2-D
IEF/SDS-PAGE. All gels were loaded with 63 X 10° cpm of
proteins and  were  visualizes by  autoradiography. The pH
gradient ranged from approximate pH 63 to pH 84 from left to
right [determined by the method of O'Farrell (1975)]. Panel B
shows the boundary of three clusters of LMW HSPs, defined on
the basis of the pl of the proteins, enclosed by dashed lines. The
area surrounded by dashed lines in Panels C-E denote areas
where the HSP profile differs from that of Panel B.
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2. LMW HSP?] 7]%9 o]d|& 13 antisense HS geneg] =3} 24

(1) HEA) antisense gene2] ¢ 3} o]e] 1@ <

LMW HSP2] I AXAANY 7%g o33y 93ty Z29 LMW HS gene
(DChspl7.7)& AM£3}o] antisense geneg WESTE  Antisense genes 93|
DChspl7.7¢] non—coding sequence(300bp) ¢+ ti¥E9] coding sequence”} Al-&-H
A3, promoter2E CaMV 355 promoter(pCa)$t DChspl7.72] HS-inducible
promoter(pH2)& Al&-3t\HFigure 9). wHEo|Z antisense gened Agrobacterium-s-
ALE3te] Fe] w2z M EE Thomas F(1989)9) i< Abg-sted =9 shgth
Aoj7 transformant® FE cell line Ca(CaMV35S promoter—driven antisense HS
gene)s} H2(HS promoter—driven antisense gene)d W& Genomic Southerng %
gt =913 T-DNAY &A2 2l 39 hFigure 10). Y ¥ antisense gene©]
ddHE AE £9387) 9389 nuclei run on assay2 AFE3FECE  ©]E antisense
gened AME3F BE oSoA antisense message’l A FUelA AR FE3p,
northern analysis® A48l £3E 48 EAHd=d B2 FAH] A7 Wi
. F799] transgenic line, Ca$} H29 HS 7)%5o 249 nucleid A} &8t 1%
A BgE g 484 transcripion £58 &894t Figure 112 o 27
2dd A439 AHREE 7 RAF=0), antisense genedl Ca &+ H2 line ol A 2]
Tk transcriptiong B F 3 9T

(2)=9 9 antisense gened)] 9% BAFFo e W3l

o]xd =<9YH antisense genesl " o] targets] LMW HS geneo] wHgo] n 3
t 9%E RU198 northern analysis® 3t ch. Sense transcript(HSP17 message)
e B7)19E single strand?) ribo-probed AM8&9ith  Figure 12004 B oF &
e ©p2H H2 lined 37° CollA control2 #:¢] nontransformed linegl 232¢+ #)
a3 40%AH =2 HSP17 transcriptd] &3 & R}, o] HS promotere] <3
antisense HS messageZl 37° CollA 7} o] Y& A target messaged] &3S
A 2AeZ gAY Line Cad] 3%+ 30° ColA Line 2329} W] a3te] HSP17
message?] %3 o] XS HAFEr]
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Fig. 9. A diagram showing the pHZ and pCa concentrations. Both the
pHZ and pCa plasmids contain a RK2 oringin of replication. RB
and LB represent for a right border sequence and a left border

sequence of T-DNA, respectively
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Fig. 10. Confirmation of the presence of T-DNA sequence in transgenic lines by

Sourthern analysis. 15 ug of genomic DNAs, isolated from callus cells of
two transgenic lines (H2 and Ca) and one control line (CL8), were analyzed
either after digestion with Pstl or as uncut DNAs. The probe was a 1.8 Kbp
Pstl fragment, containing part of the NPTII gene and the sequence
spanning between the NPTII gene and the 35S promoter, of pBI21 (shown
in Figure 15). A band of 1.8 Kbhp, indicated by the arrow, appeared only in
the transgenic lines, H2 and Ca, but not in the transformed line (CL8). To
estimate the copy number of the T-DNA in the genome of the transgenic
lines, DNA of pBIl121, digested with Pstl, was loaded in amount which
represent 1 copy, 5 copies, and 20 copies of the plasmid per haploid
ogenome of carrot. The amount of plasmid for 1X was calculated as® size of
Pstl fragment (1800 bp) / size of a carrot haploid genome (1.4 X 10° bp) X
the amount of genome DNA used for Suothern (15 ug) = 1,93 X 107° ug.
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Fig. 11. The transgenic lines were able to transcribe an antisense RNA. Nuclei (5
X 10" nuclei per 300 ul) isolated from callus cells of both the H2 and Ca
lines which had been incubated at 23 °C, 30 °C, and 37 °C for three hours,
were used for nuclear run on assay. The blot contained sense and antisense
RNAs transcribed in vitro from the plasmids, pKPN and pKPN-R, linearized
wih Xbal, in addition to plasmid DNA containing a soybean 5S riosomsal
RNA gene and pGEM3-Z. The blots were hybridized with the transcripts
synthesized during the nuclear run on reaction. Panel A, which shows the
hybridization from one set of the nuclear mun-on assays, showed
transcription of both sense (hsp 17.7) and antisense as well as 5S ribosomal
RNA (5S; as an internal control). The background level of hybridization in
this analysis was determined from the nonspecific hybridization of the probe
to pGEM3-Z DNA. Panel B shows the accumulated data from several
independent experiments after normalization with 5S. The value plotted were
caculated by subtracting the value of a backgroung (pG3) from the value of
either sense (hsp 17.7) or antisense hybridization, and then dividing b thew
value of 58 after also subtracting a background, the pGEM3-Z from 5S.
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Fig. 12. The transgenic lines showed an alteration in the steady state level of
HSP17 transcript in response to heat shock. 20 ug of total RNA isolated
from callus cells incubated at room temperature, 30 °C, and 37 °C were
separated In a 12 9 agarose/formaldeldehyde gel and the blot was
hybridized with an antisense—strand specific ribo—probe to measure only the
level of HSP17 sense transcripts. In addition to the two transgenic lines, the
nontransformed line 232 was used as a control. The blot was sequentially
reprobed with radioactively labeled DNA of 55 ribosomal RNA clone, with
an excess amount (250 ug) of non-labeled DNA of 55 ribosomal RNA to
preserve the probe excess, and the intensity of 58 band was used for
normalization of RNA loading per lane, The hybridization of HSP17.7 was
quantitated using densitometry and normalized with the hybridization of 55
ribosomal RNA.
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Fig. 13. The globular embryos of the transgenic lines produce extra hands for
HSP17 transcripts in response to heat shock. Total RNAs (20 ug) extracted
from globular embryos incubated at 30 °C were separated in 1.2 9%
agarose/formaldehyde gel, and the blot was probed with an antisense strand
specific ribo—probe to detect the sense transcript. Two extra bands (1,35
amnd 1.05 Knt) appeared in addition to a band of correct size (0.85 Knt) in
transgenic globular embryos at 30 C. The 55 ribosomal RNA bands resulted
from reprobing the same blot in order to evaluate the RNA loading per
lane. RNA samples from callug cells heat shocked at 37 °C were shown

not to have such extra bands.
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Fig. 14. The H2Z callus cells showed as reduced synthesis of the heat shock
proteins, Heat shock proteins (10 ug) isolated from callus cells were
analyzed using 15% polvacrylamide gel. Lanes 1 to 3 show the proteins
which were labeled (with ®S-methionine) during the last two hours of a
three hour incubation at 37° C. This regime of labeling has been shown to
be optimal to observe a maximal accumulation of HSPs. Alternatively,
proteins were labeled during the last 30 minute of a two hour incubation at
37° C (lanes 4 to 6). By reducing the durations of both incubation and
labeling, a subtle difference in protein synthesis among three lines can be
observed. Proteins were also labeled in the last 30 minute of a 15 hour
recovery period after a two hour incubation at 37° C (lanes 7 to 9). This
shows the HSPs which were synthesized during the recovery period. In
order to evaluate stability of HSPs during the regime used for the
subsequent thermotolerance experiments (Figure B), proteins were labeled in
the same way as in the lanes 4 to 6. Subsequently, unincorporated labels
(*S—methionine) was removed. The cells were recovered at 23° C for 15
hours, amnd were then heat shocked at 50° C for 30 minutes. Protein was
extracted from the cells and was analyzed (lanes 10 to 12). In order for
quantitative comparison, amounts of the HMW HSPs (91, 84, and 70
KDa) and the LMW HSPs (ranging from 16 to 20 KDa) as marked in the
left were measured using densitometer. Results of densitometry are

shown in panel B.
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Fig. 15. The H2 callus cells showed a lack of ability to achieve thermotolerance.
The cells were pre—incubated at 23°C, 30°C or 37°C for two hours pre-heat
shock), and the cells were allowed to recover at 23°C for 1.5 hours and then
were heat shocked again at 50°C for 30 minutes. After the treatment, the
cells were allowed to grow for ten days, and then dry weight of the
lyophilized cell mass was measured. As a control, anather set of the cultures
was prepared and incubated without any treatment. By dividing the net
increase of the cells mass for the experimental with the net increase for the
control and then by multiplying with 100, the relative growth (%) was
calculated.
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Fig. 16. The Ca callus cells growing in suspension culture showed some
difference in morphology. the callus cells of the H2 and Ca lines
were grown in MS' liquid media containing 100 ug of kanamycin. The
Ca callus cells appear to be more compact and rounder than the H2
callus  cells, The pictures were taken through an  inverted

microscope (IMT-2, Olympus) using the same parameter.
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Fig. 17. Transgenic plants regenerated from the Ca lines showed a dwarf
phenotype. Both H2 and Ca plants were. regenerated from callus cells
through somatic embryogenesis. Panel A shows the regenerated plants and
Panel B shows a representative leaf of the transgenic plants (H2 and Ca) as
well as a leaf from a non-transormed plant grown from a seed. Palel C
shows a quantitative comparison in several properties of the plants. The
data were colleted two months after the pictures shown in panel A and B
were taken. The length (from the base to the top of the leaf) of the five
largest leaves in each plant (two wild type plants, three H2 plants, and
three Ca plants) was measured. A leaf of the medium size among the leaves
measured for length, was picked and used to measure the area of the
leaf. The number of the leaves (longer than 2 cm) per plant (two
wild type plants, three HZ2 plants, and three Ca plants) and number of
leaflets per leaf (10 leaves for wild type plants, 15 leaves for H2 plants, and

15 leaves for Ca plants) were also counted for comparison.
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