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Abstract

A state of the arts in Japanese chemical process control is reviewed based on experience in applying
advanced process controf schemes 1o several industrial chemical processes. The applications validate model
predictive control (MPC), the most popular advanced control scheme in the process control community, as,
indecd, a powerful and practical control algorithm. However, at the same time, it is elucidated that MPC can
solve only the control algorithm part of the problem and one needs chemical and systems enginecring aspects

. to solve the entire problem. By illustrating several industrial process control probicms, the necd for chemical
enginecring aspects as well as the [ulure direction for process control are addressed, especially in light of current

altitudes toward product quality.

Keywards: Process control; prediciive control; quality control; on-line infercntial system; plantwide control

1. Introduction

The last sevecral years have heard many
discussions on what the present problems arc that
Japancse industrics face and how high-lcvel production
systems in the next generation should be for the 21st
century.  Three major problems addressed currently
arel):

1) the aging of society and shortage of young workers,
2) diversificd requirements for products,
3) intensification of international competition,
The strategies taken by the industry to cope
with these problems can be expressed by [our [aclors:
" a) production information integration,
b) hyper-automation,
¢) Just-In-Time production (timely production) and
reduction of inventory cost,
d) human resource recruitment,

To exccule these strategies, the application of
advanced process control and development of computer
integrated manulacluring systems as well as strategic
information systems have been steadily progressing in
the process industries.  In this movement, process
conurol is regarded (o be one of the key technologics in
the next-generation production systems and is being
further advanced so as to realize flexible production
systems with high quality products.

It should be noted here that model predictive
control (MPC) became known in the lale 1970s (o
carly 1980s. 1t has accomplished industrial success in
many chemical process control applications and has
achieved a significant level of acceptability in process
control with contributions of improvement of
operating efficicncy and proﬁlzlbilily2)

MPC is indeed a powerful method but it solves
ouly the control algorithin part of industrial problems
with chemical and systems engincering aspects absent

in the algorithm. One needs these engineering aspects’

besides an advanced control algorithm in order to
develop a practical process control sysiem.

(1)

Slephanopoulos3) notes that process control
systems design is carried out in {ive.major steps:
1) deline operational objectives,

2) identify the measured variables,

3) identily the possible manipulations,

4) delermine the control configuration and strategy,
5) design the conlrolier.

In other words, the development of a practical
process control system is not complete with only the
PID controller design and installation of an advanced
control aigorithm. To complele it, the integration of
the control technique with process design, moniloring,
and diagnosis tcchniques, based on process
understanding, is necessary.

In this paper, the current and [uture necds of
process control arc addressed by illustrating several
practical examples expcrienced in joinlL university-
industry studies. We have had exceptionally good
collaboration with the corporale scctor and have relied
on such collaborations in addressing the current and
future direction of process control. These examplcs
given are mainly from polymerizalion reactor plants
and our atlention is especially focused on the product
quality.
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2.1 Quality Modclmg

The changes in customer expectation f()r product
quality have direcled the industry’s attention to the
importance of product consistency. The demand for
product consistency is going to become greater and the
manufacture of consistent high-quality products using
minimum resources and creating little waste are key
elements of the competitive edge for industries.

In-order that process control engincers commit
themselves Lo producl quality improvement, the study
of quality modeling should be advanced.  Quality is



not always given by physical and chemical properties,
bul is sometimes given by empirical expressions. For
such cases, the quality modél is indispensable for
translating information on product qualily requirements
into specilications for physical state variables in the
process. The modeling of the quality and a method.of
integrating the quality model with a conventional
process model are crucial to atiain a good quality
control system,

2.2 On-line quality inferential system

In polyethylene polymerization processes, the
polymer product qualily is ofien quoted in terms of
rheological properties, e.g., the melt index (MI),
viscosity and so on. Due 10 the lack of an on-line
sensor for the polymer qualily, it is occasionally
evaluated off-line in quality laboratories, usually
taking two or three hours to obtain an evaluation
result.  These infrequent measurements with large
time-lags hinder the appropriate countermeasures (o
disturbances in the polymer quality and often result in
a wide variation of product consistency.

One of the recent activilies to overcome the
difficulty mentioned above is to develop quality
models and then construct an on-linc inferential system
that can predict the quality in real time from off-line
measured polymer properties and on-line measured
state variables. In the system, a quality model that
can infer the polymer quality (MI) from state variables
of the reactor, i.e., monomer and hydrogen
concentrations, is developed and utilized in a filtering
scheme, such as a Kalman filter and recursive
estimation scheme.
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Fig. 1 On-line inferential quality control system

When a new measurement of polymer quality
becomes available from the lab, model adaptation is
performed based on the dilference between the
measurement and the predicted value given by the
quality model. Afier each update, prediction of the
quality is made by successive evaluation of quality
mode! with on-line measured process variables until
the next measurcment of quality is available from the
lab. The predicted value is used on-line to determine
the control actions, as illustrated in Fig. 1.

McAuley and MacGregor developed an
inlerential system for the Linear Low Density
Polyethylene (LLLDPE) process by using a
theoretically-derived quality modet4). On the basis of
an empirically derived model, Watanabe et al.
developed an inferential system for the High Density
Polyethylene (HDPE) pr()ccss5). Koulouris ct al.

(2)

illustrated the ability of Wave-Nets, which is an
artificial neural nciwork with basis functions drawn
from the family of wavcelets, to capture the functional
relationship between the polymer guality (MI) and
process variable. They proved its potential as an on-
line inferential scheme to predict the qualily in real
time for polyolefine polymerization proccsscsﬁ) .

In three cases, the quality models are dilfercnt
each other but the basic structure of the inferential
systems is common 10 all three. The structure
iltustraled in Fig.1 is applicable to other chemical
processes where the quality cannot.be measured oflen,
but needs to be controlled on-line. Ohshima employed
the structure to develop an inferential system for
pyrolysis plants to monilor the tube-wall temperawre
on-line?). The structure offers one of the most
promising frameworks for an integrated information
system that utilizes lab data for efficient plant
operation.

3. Plantwide control and optimization

3.1 Plant wide control

Downs inroduced a simple example Lo illustrate
the necessily of plantwide control®). His example
plant consists of a scrubber and a distillation column,
as itlustrated in Fig. 2. In this plant, a 900 mol/h
nitrogen olfgas containing 10 % methanol is scrubbed
by fecding 10 mol/h fresh water to the scrubber and
then the water containing the methanol is fed to the
distiliation while the scrubbed nitrogen is vented. The
distillation column has to be conlrolled 1o concentrate
the methano!l 10 a 90 % methanol and 10 % waltcr
distiliate product. The bottom product of the column
is returned to the scrubber. For this plant, he shows
two candidales of control system, which are illustrated
Fig. 2-a and 2-b, respectively.
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Fig 2 Methanol recovery plant and control strategy



The difference between the two systems is found only
in the control loop for the scrubber. In the control
system drawn in Fig. 2-a, Ievel control of the scrubber
is performed by manipulating the feed to the
distiflation column. Conversely, the other system
does il by manipulating the feed flow rate of [resh
water. The control system drawn in Fig. 2-a cannot
control the wholc plant against a disturbance in feed
flow rate and/or composition of nitrogen off-gas. Il
the ratio of feed [lowrate of methanol and water is
changed from the 9/1 ratio, which is the ratio of
mcthanol Lo waler leaving the plant, the waler is cither
accumulating or exhausted at the scrubber, because the
component inventory of water is not sell-regulating for
the system in Fig. 2-a. That is, the control stralegy
illustrated Fig. 2-a will not work from a plantwide
view point, even though the conurol of the individual
unit might be satisficd.

This is a simple example but clearly illustrates
that the total process is not merely the sum of units
and the necessity of selection of control strategy from
plantwide control.

3.2 Plant wide optimization

To deal with diversificd products and customer
requirements, not only batch bul also continuous
chemical processes are obliged to produce dillerent
grades of product by changing operation conditions.

For example, a large-scale pilot plant of impact
polypropylene polymerization illustrated in Fig. 3 bas
o produce more than twenty diffcrent grades of
polymer in the samc reactor train. However, such
grade changeover creates the potential for producing
large amounts of ofl-specification polymer. Therelore,
it is crucial to change the operating conditions as
salcly and quickly as possible. Tor this purposc, an
optimal transition path has to be found within the
feasible operating region, which is usually tightly
constrained by the hardware capability, and product
properties’ requircments.
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Fig. 3 An impact polymerization plants

An optimal trajectory for the two reactors in the
impact polymerization plant is illustated in Fig. 4-a,
b, and ¢?). As can be seen in these ligurcs, the
optimal grade changeover is not achicved by simply
changing the opcrating conditions {rom he stcady state
value of one grade o another,

(3)

3]
[~
8
c
[¥]
oo
e
B
>
= .
0 2 4 6
4-a

Optimal hydrogen conc. change ol the Ist reactor

0 2 4 6

ethylene conc.

0 2 4 6
4-¢ Optimal ethylene conc. change of the2nd reactor
Fig. 4 An optimal changeover trajectory

The optimal policy for individual unit
operations docs not nccessarily render the optimal
policy for the whole process. Though the example of
a particular polymerization is discussed above, a
similar sitvation occurs at other chemical plants.

In the future, a plant wide optimization and
control are much more strongly required as process
integration advances.

4. Coordinated control

Usually, the number of the input variables
available to be used in a control system is larger than
the number of output variables to be controlled. There
many chemical processes where controlling output
variables by multiple manipulated variables is required
to improve dynamic control performance while
salis{ying input constraints.

Again, the polymerization reactor is a typical
example. Al a polyethylene polymerization reactor,
the ethylenc concentration in the reactor needs to be
controlled in order to maintain the polymer quality at a
desired level as mentioned at the previous section. The
leed MNow rate of catatyst can be used (o control the
ethylene concentration in the reactor. However, it is
dynamically slow because of constraints and has a
large uncertainty in both the fced low rate and the
dynamics. The cthylence feed flowrate is an allernative
that is dynamically prefcrable (fast) compared with that



of catalyst feed flowrate. Howcver, from the stcady control performance for those processes having strong

stale point of view, the ethylene feed [lowrale is interactions between inputs and outputs. Therefore,
cquivalent Lo the production rate of the polymer. multirate multivariable control is required.

Thereflore, it should be kept near a designated valuc. The study of multirate control systcms began in
As such, it is desired to control the ethylene the carly 1950s {or the aircralt control. Therc has been
concentration while keeping the ethylene feed [lowrale a greal deal of rescarch on stability analysis that
near a desircd value by using both input variables cmploys cither a transfer {unction or state-spacc
simultancously and in a coordinated way, as illustrated description. But, few applications have been seen in
in Fig. 5. That is, the process nceds a control system process control. Recently, Gopinath and Bequclic
that can turn off the cthylene feed Mowrate control and proposed a design method for multirate model
bring the flowrate back o the designated values as the predictive control of a SISO system where the output
effect of the calalyst feed is fell on the ethylene measurement is performed less frequently than the
concentration. A classical example of such a control corresponding input action}®). Ohshima et al. also
scheme is override control.  Recently, more proposed a multirate mullivariable control algorithm

sophisticated contro! schemes achieving this objcclive as an extension of Modecl Algorithmic Control and
have been devcloped, such as Valve Posilion Control

I applied it to the impact polymerization reactor! D,
7 and Coordinated Control! D,

Control techniques for multirale sampled

As we can scc in this example, it becomes processes have Slea(lily progrcsscd' hOWCVC[, the
neeessary in future process control 1o design a modeling techniques for these processes are not
multivariable control sysiem by prioritizing cultivated. Even (hough time serics modcls, such as
manipulalcd variables and control loops according to ARX, ARMAX and CARIMA models, arc popular and
constraints as well as dynamics ol the inpuls. [)I'Z\CliCEll linear rcprcsenlalions of the process, few

modeling schemes thal can develop these models {rom
setpoint u2 slow multirate sampled time scrics data are cstablished. As
ul——] Controller > ‘the demand for quality improvement grows higher and

the nccessity of multirate multivariable control
Disturbance  SYStems becomes larger, the establishment of
modeling techniques for multirate sampled data is

seipoint in W Ty .
) i gt Y much more indispensable.
} Controlier S fast ‘e r>
6. Application of model predictive control
and its limits.

Fig. 5 Coordinated Control Structure Model predictive conurol has emerged and been
acknowledged as a powerful and practical control
algorithm. We have applied model predictive convrol

5 Control and wmodeling for multirate to several industrial problems, fisted in Table 1, which
sampled systems are relevant Lo the topics that we mentioned above.
In many chemical processes, not all output Table 1. Industrial application of MPC

measurcments are available at the same sampling rate
and not all input variables are available to be

2
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manipulated at a uniform rate of action. As described A4Process & s 3futin e problems 4
in the previous section, the polymer quality is Qetical Fiver | Diaimal Fiop Fasponse modl| upls nputs [ Redrsion atibe,

. . . ontr syslem eran
measured off-line occasionally at a quality lab. The Process Y Speed
sampling rate of the quality is less frequent than the | B A9 | omposivon ME G Mo1% | Faod Dishrboncs
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conventional P.T.L.F. mcasurcments i.c., Pressure,  jloin Adaptive uncion P P
Temperature, Level, and Flow measurements, and they | o sings, 1251 Gameto) Siop flesponse mode! fnfaronce of S Gramatr
may not be cqually spaced in time. Furthermore, the -

. . Rotary Quality Contrdl “Step Response modet| Haw 10 deal with | ot avzilabie af
direct feedback control ol concentrations becomes Dryer ‘202 MPC OP.$ ow production rate
necessary o keep lhg polymer quality at a specified Polymerizaion | compesiton oo | not complate
level. The concentrations are usually measured by gas {polybutens) dala
chr hs and the ‘Tequi P olymerizaton “Step Responss modal[ MR ele sampled | L o model
chromatographs and these measurements require a  [Rrmer Ouslity Conrol ool sgstem’ Y pouaiverl
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slower sampling rate than P.T.L.F. measurements, [f  |tmesd copolv 959 Mhdtrate ﬁa’:ggov':r *
all the control actions are synchronously performed at  [Pelymaraaion | 6,4y o | -rrre e Inerance o qualty| 0 rede medet
the slowest sampling rate, the control system cannot  [Poyethylans)
quickly attenuate disturbances in other, more lrequently
sampled outputs, such as temperature and pressurc,

Normally, a multi-loop control sirategy is MPC could solve the control algorithm part of
employed Lo control processes where ouipuls are process control probiems. However, (here remain

measured at different sampling rates.  However, a several problems that have ‘o be solved from the
multi-loop control strategy cannot provide the best chemical engineering aspect. This section addresses

(9



which part of the control problem could be solved by
MPC and which parts could not.

In the optical fiber spinning process, by
carrying out an open-loop step response lest, lhe
dynamics of the process were identificd and feed
forward and fecdback control was constructed to keep
the [iber diameter at a specilied value. A model-based
approach was taken for rcalizing the control structure.
The difficulty we confronted during the development
was the choice of the manipulated variables. The
sclection of the inpuls to usc in fecdforward and
fecedback relied on the judgment and experience of the
company's cungincers. No general guidcline (o
delermine the control strategy could be derived. In
addition, the system had to be redesigned when the
spinming specd of fiber was incrcased.

The diameter control of the Gallium Arschate
single Crystal process was -also carried out using
model predictive control. However, a major difficulty
was the lack of an on-line sensor ol diametcr. As
such, an infercntial control system was needed.

Similar difficultics appeared in a rotary dryer
control pr()l)lcmM). In order to maintain the quality
of a special material at the desired level, the
leimperature profile in the dryer had (o be controlled.
Instead of dealing with the partial differential equation
model and a distributed parameter control system, the
process could be treated as a lwinped parameter system
by controlling the critical drying point. The crilical
drying point is an inflection point of the temperature
profile where the drying mcchanism changes from a
constant rate of drying 1o a decreasing rate of drying,
although it is unmcasureable. By developing an
infcrential control system for Lhe critical point,
conventional model predictive controt could be applied.

For polymerization reactor control, four diflerent
rcactors were studied. The impact copolymerization
process, which is illustrated in Fig. 3, is onc of the
multirale oulput processcs, where the pressure and the
monomer concentrations in the rcactor are to be
controlled.  However, the sampling rate. of the
concentrations is less frequent than the pressure and
tomperature measurcments, A multirate model
predictive control scheme was developed by modifying
conventional MPC and applied it to the polymer
process. For this process, dynamic optimization was
also considered in order 1o determine the optital grade
changeover.  The optimal trajectory of the grade
changeover operation, which was calculated by solving
SQPF on a workstation, is illustrated in Fig. 4. The
tracking control was performed by conventional model
predictive control, as illustrated in Fig. 6.
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Fig. 6 Realization of optimal trajectory by MPC

The result shows the supcrior performance of
MPC. However, a real-time optimization is requircd
in the future since the calculated trajectory was no
longer optimal once the state of the reactor dilfers {rom
the trajectory. The reccding horizon type optimization
is promising when the process has a reasonably large
time scale for dynamic behavior so that a solution of
the optimization can be calculated for cach controller
execution.

For (he polybulcene reactor, a multirate sampled
control system was nceded as well as the on-line
optimization. However, the devclopment of the
control system was retarded because of difficultes in
developing a suitable model from the closed-loop
controlled process data, i.e., normal opcrational data.

There are further difficulties which might be
solved by the integration of the knowledge-bascd
approach with model-bascd approach,

For cxample, in the case where MPC was
applicd 1o the impact copolymerization reactor, a step
response model was prepared for cach grade. For a
reactor, more than twenty Lo thirty lincar models were
prepared to cover the broad operating range. However,
in order to perform any grade changcover with limited
computer memory, Lhe twenty to thirty modcls should
be reduccd or rc-organized. The problem is how to
reduce the number of models while guarantecing the
controltability for all grades. A similtar problem was
found in the polyethyiene polymerization rcactor and
the GaAs crystailization process. i

The integration and coordination of different
control schemes is also a problem in the reactor
control system. When start-up and shut-down
operations are performed for the rcactor process, a
special control algorithm, which may differ (rom
MPC, might be used. For example, to carry out the
start-up operation, a fuzzy-bascd control system is used



by the company working with us on the polyethylenc
reaclor. Because MPC shows superior performance on
regulatory and grade changeover control, itis desired o
combine the {uzzy-based control system with MPC
and to shift the operation from the start-up to
regulation without any wind-up and bump.

It may be sated that the difficultics mentioned
above are caused by the non-lincarity of chemical
processes.  In academic circles of process. control,
there has been great interest Lo develop a practical
nonlincar control system. Because of the many
successful industrial applications of MPC 10 systems
described by lincar models, there are cnergelic activitics
[or extending the MPC concept to nonlincar control
systems. However, nonlinear control theory developed
50 far is not yct mature enough to offer simple and
practical solutions 1o today's needs for a flexible
control system and this situation provides a strong
motivation for intelligent controllers.

7. Conclusion

Facing the 21sL century, Japanese chemical
industrics must create a strategy for coping with the
current cconomical situation as well as the changes in
demographics and lifestyles. The renewed cmphasis on
quality improvement is cited as a major factor of
resulling in international competition.

Production information integration, hyper-
automation, cost reduction and human resource
recruitinent are progressed as the strategy to deal with
the situation. The exccution of the strategy needs a
practical technology. At present, model based
predictive control has attracled strong atlention as a
control technology.  However, MPC is not the
panacea in process control.  The cnthusiasm for
development of advanced control and opcration
techniques based on process understanding is claimed
to give simple and practical solutions for more
difficult control problems. In addition, future rescarch
needs have been clucidated through joint university-
industry studics with emphasis on quality modeling,
on-line infcrential systems, plantwide control and
optimization, coordinated control, modeling and
controt for mullirale systems and integration of
knowledge-based control with model-based control,
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