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Abstract: The spectrum estimation methods of
random processes are expressed in this paper.
Beginning with the basic theory, non-parametric
and parametric methods are overviewed.

As to non-parametric method, numerical cal-
culation method 1s also discussed. As to para-
metric method, AR model is a very famous
and effective model representing random pro-
cess. Estimation methods of AR parameters
which have been proposed are mentioned here.

Wavelet analysis is a recently interested tech-
nique in signal processing. An applicalion of

wavelet analysis is also shown.

1

Introduction

Spectral analysis is a very effective method to
find the special features of the observed signal.
So spectral analysis has been applied in many
engineering fields since old times.

The observed signals in several fields are more
or less random. This means that the wave form
15 different whenever we observe the same sig-
nal.

Mathmatically a random signal is expressed
as a stochastic process. Spectral analysis is use-
ful techinique for a weakly stationaly stochastic

process. To find the power densily spectrum is

(13)

the spectral analysis for the process.

In practical analysis, it is necessary to calcu-
late the spectrum numerically, and the calcula-
tion procedures were developed till now.

There 1s another problem in spectral analy-
sts of random process, because statistical esti-
mation is necessary for the analysis. From this,
parametric method is proposed. Many estima-
tion methods of AR parameters are developed.
It 1is shown that the paramelric method is es-
pecially useful for speciral analysis of a small
number of data.

Wavelet analysis is a recently interested tech-
nique, an ezample of this method is shown in

this paper.

2 Basic Theory of Spectral Analysis ("~

2.1

Power spectral density of stochastic pro-
cess
Let z(t) be an elgotic weakly stationary

stochastic process with zero mean value.

That is,

Eat)] =0 , Ble@a()] = dult - o)
Where the correlation function is a function
of time interval (t —s). This means that the z(t)’
s a weakly stationary stochastic process. And

E[] means averaging on the probability space.



Put t—s = 7, and the correlation func-
tion becomes a function of only . Performing
the Fourier Transform to ¢.(1), we can get the

power spectral density P,(w).

bo(w) = Flga(7)]
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Power spectral density @,(w) shows the den-
sity of the power at an angular frequency w.

From the orthogonarity, the following Parse-
val’s equality holds.

E[2*(t)] = 51; [ e @

 To obtain the correlation funciion ¢,(7), we
calculate it in time average under the assump-

tion of elgodicily.

AT (RTOE R RN )

Where time interval (0,T) is observing inler-
val of the signal z(t), and it is taken enough
long. This procedure obtaining power spectral
density is called Blackman- Tukey method.

As well known, FFT(Fast Fourier Trans-
Jorm) was found as an effective method to calcu-
late Fourier Transform. By applying FFT, the
procedure obtaining power spectral density was
changed from Blackman-Tukey method to I'FT
method.

At first, we calculate the Fourier Transform

of z(t).

Xr(gw) = Flzg(t)]
= /°° zp(f)etdt ()
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where T means the time interval of z(t).

From this, we can obtain the power speétral
density of a stochastic process as follows:
2.(w) = EQJim Z\X:G)f] (5)
The important point is that the averaging pro-
cess is necessary even if we calculate Fourier
Transform for long time interval (idealy inﬁn;te
interval )(12),

These procedures are shown in Fig.1.
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Figure 1: Two non-parametric procedures to
obtain power spectral density

2.2 Numerical calculation to obtain power
spectral density

To obtain the power spectral density, rather
complex calculations would be necessary. So we
must apply numerical calculation by digital com-
puter after digitalizing the given stochastic pro-
CESS.

The stochastic process z(t) is transformed to
a time series {z)} according to the well known
Sampling Theorem.

The Fourier Transform of 2(t) is calculated

numerically as follows:

A A n—1 . .
X(]Q']I’f) = ‘2—[930 + 2 Z g;'-e"'JZ""fA + wne—_ﬂan
=1



In this calculation, the values of X are oblained
for f=k/nA(k=10,1,2,---,n/2) .

~ A n-l c2wi
X, = -5[210 + 2 E m;e“’ank

1=1

+z,]  (7)

To obtain the power speciral density, we must
perform averaging process for | Xi|2.

We acquire the time series repeatedly, calcu-
late the power spectral density for each time se-
ries and average them. Moreover it is also use-

ful method to average in frequency domain (12

3 Non-parametric Method in Spectral Anal-
ysis (2~4)

3.1  AR(Auto-Regressive) model

In many cases, randomly changing time se-
ries {zi}(k = 1,2,---,N) can be represented
by the following AR model:

Tn+ 0121+ 0Tn2t 0+ G2, =€, (8)
where {e,} is white noise.
E[en] =0 ) E[e"em] = Dé"m

In this model, the order p of the model and
the parameters (a1, az, -, a,) are chosen as the
model fits to the observed time series. When the
order 1s defined, the parameters are obtained by

‘the following Yule- Walker’s equation.

1 P Pp—1 aj ~p1
P1 1 Pp—2 az —p2
Pp—1 Pp-2 ¢ 1 ap —Pp

(9)
where p = @r[do , s = E[zniny)
The important point is that the coefficient

matriz of Yule-Walker's equation is a Toepritz

(15)

matriz. From this fact, many efficient calcula-
tion procedures are proposed as mentioned later
in this paper.

Another method to find the parameters is to
apply Least-Square Method.

Put
N

Y Entaize+ o+ apzay)’
n=p+1

J

il

(10)

Calculating the derivatives of J by the coeffi-

cient, we can obtain the following equation:

S+ ar1dhor+ o Fapdp, =0 (1)

where
(12)

Equation (11) is called Normal Equation.

. 1 N-—k
¢k = _ﬁ——k nZ:l Tndntk

When we get Yule-Walker’s equation, we
must find the coefficient mairiz from the ob-
served time series.

Pr = ik—

o

Then Yule-Walker's equation is the same as
Normal equation.

As to choosing of the order of AR model, FPE
and AIC proposed by AKAIKE are very famous
B4 It is also practical method that we choose
the order by watching the decreasing rate of J

according to increasing of the order .(2)

3.2 Recursive estimation of the AR param-
eters

We can derive the recursive estimation pro-

cedure of AR parameters, because the coefficient

mairiz of Yule-Walker’s equation 1s Toepritz.



The algorithm is called Levinson- Durbin’s al-
gorithm which is recursive as to the order of the
AR model.

The parameters of AR model with order (m+
1} are obtained from the pdmmeters of AR

model with order m.
aj(m+1) = aj(m) + apq1(m + Dam—js1(m)
(]: 1,2,"',777.)

_pm1 + 2L ai(M)pm—ina

am+1(m + 1) = 14 E;ﬂ;] ai(m),ﬂi

_ (13)
On the other hand, the estimation method re-
cursie as to the data is also obtained. The basic

method s recursive least square method.
Put

— T
a = [a1)a2)"')ap]
T
X = [‘"mn—l;—mn—2>"'a_73n—p]
then AR model is rewritten as follows:

(14)

Let the parameters obtained by the data from

T
Ty =& Xp+é€n

T1-p to oy be ay, then the recursive equation

becomes as follows:
~ A T ~
ay =ay_1 + Ky (JEN - xNaN—l)

(15)

-1
ky = Py _1xy (1 + X%PN_IXN)

Py=(- kNXN)T Py_4

3.3 Estimation of power spectral density by
AR model

AR model is the output of the system shown
in fig. 2.

The power spectral density of the output of
the system is given by the following equality:

D

(I) = - :
I(w) |1+ale—-]wA+“_+ape—Jprl2

(16)

(16)
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Fgure 2: The system expressing AR model

where ¢,(1) = DS(7).

To obtain the power spectral density by this
procedure, the system expressing AR model must
be stable. In this case it 1s said that AR model

15 stable.

4  Estimation of Power Spectral Density from
a small Number of Observed Data (3:6)

4.1

Estimation methods based on prediction
error

One of the most important special features in
obtaining power spectral density using AR model
18 to exterpolate the correlation function from

the given one.

Let the correlation function be ¢(7) (r
0,1,+-,m). In non-parametric method, we as-
sume that ¢(7) = O(r = m + 1,m + 2,+).
But AR model estimated from mth order Yule-

Walker's equation has the non-zero correla-
tion value at 7 = m+ 1,m + 2,---. From
given correlation function, we estimate a cor-
relation function as the linear combination of
e”*" coswt and/or e sinwr. So we can es-
timate the power spectral density beter than the
non-parameiric method for a small number of
the observed data. This justification s also’
gwen from the viewpoint of MEM (Mazimum

Entropy Method).



4.2 Burg Method

The forward and backward prediction errors
of AR model are given as follows:

Forward prediction error:

(17)

m
m (m) .
€y, = ZIn + Z Ay Tn-k
k=1
Backward prediction error:

(18)

™ .
mo___ .. (m)
TTn = Tn-m + Z Qg " Tn—-m+k
k=1

Put the cost function as J,,.

I = z {em?+(m (19)

And we assume the following equality using

in Levinson-Durbin's algorithm.

(m~-1)

aflm) — a&mﬂ) + ko (n =12, ,m)

(20)

The paramters minimizing Jon, obtained easily
by using this equality.

This algorithm is well known as Burg method.

By using Burg method, we can get a stable
AR model. But the Levinson-Durbin’s algorithm
would not hold for the equation minimizing J,,.
So Burg method is not theoretically correct. It
15 pointed out that the undesirable phenomena
such as line spritting and bias can take place

when we apply Burg method .

4.3 Forward
method

and backward

covarlance

To avoid the theoretical inconsistency of Burg
method, we consider to minimize J,,, without us-

ing Levinson-Durvin’s algorithm.
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Algorithm as to
the order

Figure 3: The method to obtain the coeflicient of AR model

(17)



Put
N—-m-1
¢k, 5) = S (TitmeiTigm—i + TiskZit;)
i=0

(21)
k,7=0,1,2,---,m

The coefficients of AR model minimizing J,,

satisfy the following equation.

1
#(0,0) - p(0,m) \ | o i
$(™)(m, 0) ™) (m, m) %"))1 O

171

(22)

In this equation, the coefficient mairiz is
not Toepritz. So, we cannot apply Levinson-

Durvin’s algorithm.  The weakpoint of this

4.4 An Example

We
The

Figure. ] shows a speach signal of KA.
divide the data in eleventh partial ones.
pou.mr spectral density is obtained for each in-
terval by F'F'T and paramelric method.

The result obtained by FI'T scems to be dif-

ferent from the other resulls, because averaging

process is not performed.
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Speech signal :

method is that the stability of the AR model is the number of the data for each interval : 128
The order of AR model : 15
not assured. :
Marple derived an algorithm to solve the
equation successively as to the order m.
The methods to obtain the coefficients of AR Figure 4: Speech signal KA
model are shown in figure. 3.
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5 Wavelet Analysis (")
5.1 Wavelet transform

Wavelet transform of @ signal z(t) is defined

as follows:

Ty(a,b) V'/ ( )za)

where a and b are real number.

(23)

Function ® 1s called analysing wevelet, and
the following integral must be limited.
oo A 2
oo [P UBOP,,
—oo w
If the integral of z(t) from —oco to oo is lim-
ited, the inverse wavelet transform is given as

follows:

1 oo foo t—b\ 1
= \72/_«,/0 T, (a, b)® (T) —dads
(25)
The discrete wavelet iransform 1s shown in
the next section.
of

5.2 An efficient calculation method

wavelet transform

Wavelet transform requires more computaion
That leads to an

obstacle of its engineering application. An ef-

time than Fourier transform.

fictent calculation method of wavelet transform
was developed in my laboratory .(8

The proposed algorithm is effective in case of
Mayer’s wavelet which is defined in frequency-
domain. The algorithm is realized by deforming
the analyzing wavelet in the part of time trans-
lation, and applying FFT algorithm to it. Ac-
tually this method is explained below.

(19)

The discrete wavelet iransform of the ob-

served signal z(t) is given as follows:

ae = [ aTa)a (26)
Uik = PY@t—k), jkeZ
T length of data

Applying Parseval’s equalily, we get the ez-

pression

Gk = or /

where 1Z;j,k(w) s able to be rewritten as fol-

Wyix(@)de  (27)

lows:

) = (~%54) duole)  (28)

Further, as integral range is limited to
[0Hz ~ 2f, H?z)], where f, is Nyquist frequency,
the discrete wavelet transform on digital calcu-
lation 1s:

N-1

A 2T
oy = —2—7% > exp <zE—n k)

n=0

w] O(Wn)x(wn)

(29)
number of dala

frequency sampling width

= Aw-

n

Since exp (z n . k) is periodical, we can cal-
culate this expression by FFT algorithm. Thss

method can decrease calculation time.

5.3  The extraction of an acoustic signal em-
bedded in noise ®

An extraction method of an acoustic signal in

noise is proposed in this section. It is known’

that the Jrequency band width of the acoustic

signal 1s located between 40Hz and 1.4KHz.



Moreover the noise is white and the probabil-
ity density function of its amplitude is Gaus-
stan, Then we perform wavelet transform for
these data. The frequency-band of the acoustic
signal after transformation corresponds to the
numbers of j. The average powers over short
times of each frequency band are calculated from

the wavelet coefficients as follows:

Emy = z O‘J,

k=m

Average Power : (30)

Our simulation shows that the average power

in the part including an acoustic signal is much
bigger than in the part not including 1t. Defining
the threshold and cutting out coefficients which
is smaller than the threshold, the essential sig-
nal is reconstructed by inverse wavelel trans-
form. This is the extraction method by wavelet
transform.
-—The author exlracts an acoustic signal from
the real data by two methods: wavelet transform
and FIR band-pass filter. The results are shown
in Fig.6.

WO\Velet

J= lo
I‘lgme 6: Results of wavelet transform and ex-
traction

(20)

6  Conclusion

Spectral analysis of random process is not so
easy, because we must estimate it from the ob-
served data. So the many calculating methods
were proposed till now. If we apply these meth-
ods carefully, the‘ results are not so different. It
will be important to use an appropriate method

for the analysis, considering what features of the

spectrum we want to find.
Recently it is wanted to find the partial nature
in time domain. For this aim wavelet analysis

is considered to be useful.
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