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Abstract :  This paper describes a design method of
compensators for decentralized control systets. Decen-
tralized control problem is convenient to design multi-
variable control systems and lormulated as a series of
independent designs.  The proposed design method is
composed of some steps, which is sequentially to close
loop of the systemn diagonalized by regarding interactive
subsystem as perturbation for current loop. So, on the
basis of H., control theory, decentralized controllers are
designed considering robust stability for diagonal sys-
tems with perturbations. A numerical example shows
that the proposed design method is effective for multi-
variable control systems.

1 Introduction

The goal of any controller design is that the overall sys-
tem is stable and satisfies some minimum performance
requirements. These requirements should be satisfied at
least when the controller is applied to the nominal plant,
that is, we require nominal stability and nominal per-
formance. lu addition, when decentralized controller is
used, it is desiable that the system be failure tolerant.
This means that the system should remain stable as in-
dividual loops are opened and closed.

A design method of multivariable control systems has
been proposed by considering this system as decentral-
ized control systems whose structure is block-diagonal.
Some reasons lor usiug decentralized controller are that
tuning and retuning is easy and they are easy to make
failnre tolerant and so on.

The design of decentralized control system involves
two steps. Iirst step is sequential loop closing, second
step is independent design of cach loop. However, ihe
method ol first step depends strongly on which loop is
designed lirst and how this controller is designed. There-
fore, the method of first step has disadvantages which
the design proceeds by "trial-and-error”™ since there arve
o guidelines on how to design the controller for each
loop.

In this paper, we propose a design procedure which
guarantees robust performance taking acconnt of ro-

bustness for each diagonal subsystem by regarding off-
diagonal subsystems of multivariable control systems as
perturbations of cach diagonal subsyslem and setting
bounds to these perturbations as an uncertain transfer
function within an upper bound. Mainly for mathemat-
ical convenience, we choose to define performance using
the 1 -norm.

2 Preliminaries

Consider the following set of subsystems S[(7, €], as
shown in Fig.l. C is decentralized compensalor and
block-diagonal matrix.t"
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Fig.l Decentralized control system S[(3, )



Generally G, is transfer Tunction matrix with ¢; inputs
and p; outputs and (¢ cannot be square matrix, how-
ever, must be a set of transfer function matrices with
(N x N) dimensions when decentralized control system
is discussed. In this paper, so, in the case of p # ¢, the
control object is rearranged to square matrix by parti-
tion of its matrix.

In general, nominal performance is guaranteed when
the following condition is satisfied
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Iig.2 Mixed sensitivity problem

where, 17 is the input weight and often equal to distur-
bance model. W, and W5 are the output weights and
these are used to specify the frequency range over which
the sensitivity function and complementary sensitivity
function should be small and to weight each output ac-
cording to its importance,

Skogestad and Morari have derived the following con-
ditions for robust stability.[?
(i) Assume T is stable, and G and G have the same num-
ber of RIIP poles. Then T is stable {the system is stable
when alt loops are closed) il

a(T) < p"(Er) , Yw , Er = (G =G (6)

(i) Assume S is stable, and G and G have the same
nuwmber of RIP zeros. Then S is stable if

#8) < 7' (Es) s Yo, Bs = (G- GG (7)

where
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S and T are sensilivity function matrix and complemen-
tary sensitivity function matrix respectively. pi(-) is the
pi-interaction measure and j is computed with respect
to the structure of the decentralized controller €. @(A)
means the largest singular value of matrix A.

Although condition Eq.(5) and Eq.(6) are, what is
called, "fine” condition for robust stability, they give dif-
licnlty in stabilization of decentralized control systems,
and assume that uncertainties and interactions in (5 are
neglected when each element in 7 is designed on the ba-
sis of the information in G only.

3 Sequential Design Method

3.1 _Sequebntial Loop Closing

In this paper, decentralized controllers are designed by
effectively using robust stability condition, applying well-
known sinall gain condition for each subsystein, consid-
ering uncertainties eflected interactive subsystems, when
each diagonal subsystem is sequentially closed.

Genarally the relation between wg and gy of &' sub-
system is as [ollows (see Fig.3).Pl

Y = P + dy (8)
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where,
%= block diag{ (), Ca,- - -, Crof, Crprn -+, Oy}
Grj= [Gray Gy - - ’,("k.k—h("lck-i—h' < Gin]
Gt = [Grrs Gy < Gmipey Grgtty -+, Gvi) ¥
= [7'1~7‘z,‘ T Vh—1,Tk41, 'J'N]T
j=02 N Ak

Hence, Eq.(1) is diagonalized as
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Hi implies additive perturbation for current. subsystem
Grr, which is composed ol transler functious of closed
subsystems. dy implies disturbance to enrrent outpnt gy,
which is composed of reference signal [r;]T and transfer
functions of closed subsystems.

As shown in Fig.3, Eq.(9),(10) may be denoted as a
linear fractional transformation of (y.
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Fig.3 k™" subsystem
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Fig.A k™ subsystem with additive perturbation

3.2 Design Algorithm

When interactive loops are involved in each diagonal
subsystems from Eq.(7)~(10), each diagonal subsystems
come Lo have additive perturbations for its nominal sys-
teins. Tn this paper, we consider P is nominal transfer
function matrix as shown in Ilig.4 and propose a sequen-
tial design procedure of compensator matrix € for Py,
introducing the concept of diagonal dominance.l’l

A rational n x n matrix Z(s) is said to be diagonal
dominace il the following conditions are satisfied.

Let D be a Jarge contour in the s-plane consisting of
the hmaginary axis from —iR to +iR, together with a
semicircle of radius R in the right half-plane. For each s
on

n
cither [z;(s)] = 3 fz(s)f >0, i = L,2,...,n
D i=la#i (13)
or |Z,’i(5)| - Z le,j(S)l >0,:1=12,...,n

J=1j#i

The former and latter are said to be diagonal row domi-
nance and diagonal column dominance respectively. For
berevity we shall talk simply of row dominance, colunn
dominance and dominance. From the definition it fol-
lows that row dominance implies dominance, and colunm
dominance implies dominance.,

Let propose a scquential design procedure of C; as fol-
lows. Clompensator matrix ('; for subsystem P; is gen-
etally full matrix with (¢; x p;)} dimeusions. The design
method considered in this paper uses two compensators
Ki{(s) and (i) as shown in Fig.5. K; is used for pseudo-
diagonalization of P; and Ciis diagonal matrix, used for
stabilization of each loop.

Iig.5 Pseudo-diagonalization problem

stepl: [For i =1, select C7 suitably so that H; becomes
stable.

step2: Design I{; so that P;I{; becomes pseudo-diagonal
dominance. As shown in the following cquations,

K. = Ni4 P7'A i PR = PR 4 A (14)
PR - PTA PN = P - A

A; € R
A,‘ € Rrixi .

diagonal matrix
non-diagonal matrix

A diagonalizable compensator matrix A is designed
so that P satisfies Eq.(12) using a (¢ x p;) ma-
trix I} and a diagonal matrix A; vr a non-diagonal
matrix A; anew.

stap3: Design maiu coutroller C; for each diagonal loop
by means of frequency shaping method 1o satisfy

WS D, .
Si=(I+PiRCH Y, (16)
To= PG+ PIGC) (17)

step4: Let 7 := 1 4 |, repeat under stepl until 7 = V.

Here, although the design loop to start may be arbitrary,
it must be rounded as k — N — 1,2 — (k- 1).

Feature of sequential design method proposed above is
to formulating as a series of independent deisgns throuth
regarding interactive loops as a perturbation of curvent
loop and pseudo-diagonalization of this system.

4 Numerical Example

An effectiveness of the proposed design method is
shown by a wumnerical example. Counsider the lollowing
set of subsystems with N = 2.
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(’(#) = block diag{C\(s), ("2(s)}
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Gn(s)= 7 - p : 7 - . :
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stepl: F'or i = 1, considering afier design, C; is designed
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s0 as 1o be robust for a bounded interactive terms of (7.
step2: In order that diagonal element of P&, has in-
tegral characteristics and Py K, becomes diagonal dowmi-
nance, K, and Ay ave selected as

1 ol 20 0

o N : s(s+1

Ky(s)=| ¢ 1 | Ay(s) = (s ' ) 20
0.1 " ( -———S(S T

step3: For diagonal element, when we select its fre-
quency weighting functions as

] 5

00654002 240165 + 0.02}

l'["|(.§) = (li;“g {
Wy(s) = diag{2 x 107%s%, 2 x 1075},

a stabilizing compensator matrix satisfing Eq.(14) is ob-
tained as

1+ 1.5s 0
Cu(s) = (K + P Ay | 1004 Ny
0

I+ 0.03s

stepd: For ¢ = 2, since it is found that the controller
assmming al stepl satislies
Cr
—— | <,

o

1+ GOt

we sel ((s) = Cf(s) and design procedure are com-
pleted. Finaly, actual step responses using these com-
pensators is shown in Fig.h.

5 Conclusions

In this paper, we proposed a design method for de-
centralized contro] systems considering robustness by re-
garding interactive subsystems of multivariable control
systems as uncertainty of the diagonal subsystem se-
quentially. Moreover it was shown that even a simple
sequential stabilizing method such as recursion of some
steps is ellective for multivariable control systeis.
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Fig.h Step responses of the closed-loop system



