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Abstract

It is well known that the Boyd's theorem stales the
relation between the imaginary eigenvalues of discriminant
H of Riccati equation (A,R,Q) and the singular value of
transfer function, but it is only available for R20 and Q0.
In this paper, we extend Boyd's theorem for two case, that
is, R is symmetric, Q is sign definite, and R is sign definite,
Q is symmetric. We give under the condition that there
is a real symmelric solution of Riccali equation the
relation between H has imaginary eigenvalue and the
maximum eigenvalue of transfer functoin. Finally, we give
a necessary and sufficient condition to determine whether
H has imaginary eigenvalue under some conditions.

1. Introduction

The Riccati equéﬁon considered in this paper has the form
as follows.
ATP+PA+PRP+Q=0 1-1

Where A is real matrix, R, Q is real symmetric matrix.
The discriminant H is

" (A R > o |

Q A

it is well known that the Riccali equation plays a great role
in various control fields from the optimal regulator theory to
H~ control theory. The feedback gain of control system is
determined by the solution of Riccati equation, especially,

the stable solution. But the solutions of (1-1) are determined
by discriminant H, that is, the solution consists of
eigenvectors or general eigenvectors of H, the position of
eigenvalues of H in complex plane determine the stability of
solution of (1-1). It is a well known result that if a solution
is stable if and only if H has no imaginary eigenvalue.

Therefore, if we want to have a stable solution, we hope to
have a method to tell us the condition in which H has no

imaginary eigenvalue. This is Boyd's theorem.!"

For R=BB™ and Q=C"C, Boyd's theorem telis us that the
transfer function G(jw,)=C(jw |-A)'B has singular value=1
if and only if H has a eigenvalue=jw,,

In recent years, much attentions were paid on Riccati
equation, because it plays an impontant role in the H*
control theory,we can say this equation in fact constitutes
the bottleneckof all of linear system theory. It is necessary
to know the constructure and the properties of solution
of Riccati equation, and whether the Riccali equation
determines all properties of linear system. Especially, the
problem about stable solution.

In this paper, we started as an effort to extend the
Boyd'’s theorem so that it can be available in the following
cases.

That is, case 1, R is symmetric, Q is sign definite,
case 2, R is sign definite, Q is symmetlric.

The cause we must have R or Q sign definite is that if
not so, we can't have a transfer function corresponding
to Boyd'’s theorem.

In section2, there are two lemmas that are the
preparation for the proof of theorems in section 3.

In section 3, we give some extensions to the Boyd’s
theorem, these results can be used to solve the H™ norm
problem.

In section 4, we present some new results. Lel Ris sign
definite and Q is symmetric, A has no imaginary eigenvalue
, then under the condition that Riccati equation has real
symmetric solution, a relation between H has imaginary
eigenvalue and the maximum eigenvalue of transfer
function is given. The Riccati equation in H” control
theory has the property that Q> 0. In this case , we have a
similar result .

The results mentioned - above have a limitation that is A

“has no imaginary eigenvalve. Finally, we give a necessary

and _sufficient condition to delermine whether H has
imaginary eigenvalue.



2. Preparations

Before we give the proof of theorems in section 3,
Let us give two lemmas that will play an important role
in the proof of the theorems in the next section.

Lemma 1: Let H be a matrix of size nXn, andH,,
HH,.H,, be matrices of sizg n1Xn1, n1Xn2, n2Xn1
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n2Xn2. n=n1+n2.

H" HYZ
w (M
HZ! HZZ

if detH, #0, then

detH=detH,, - det(H,,-H,H, 'H,,) 22
if detH,, %0, then
detH=detH , - det(H, -H _H,'H,) 2-3

Proof. First, let us prove the case when detH ,#0.
I .1, are unit matrices of size n1Xn1, n2Xn2.

(o, )

HZI HZZ HfiH' 1.’ II|2
Hl 1 0 In! H’ 1 ’le
x( ) ( )
0  HHH, H 0 I
2.4

From the fundamental properties of determinant,
we can finish the proof.

detH=detH, - det(H,-H, H,"'H,)

Next, let us prove the case when detH,,#0.

H H 1 HH'

( 1" 12 ) ( at 12" "2 )
Hzr sz 0 lnz
Hv 1 'Hrszzlv 21 0 ,nv 0
x( X )
0 sz H2z' ' H:l In2

2-5

By the fundamental properties of determinant ,
we can finish the proof.
detH=detH,, - det(H, -H H,,'H,)

12" 22
0
Lemma2 is a simple consequence of lemmal.
Lemma2. Let A,B be matrices of size nXm, mXn.
Then,
del(l +AB)=del(l_+BA) 2-6

Proof. A
LetA=< ' ) 27

-B [}

m

From equation 2-2, we can obtain equation 2-8,

detA=del(l_+BA) 2-8
From equation 2-3, we can obtain equation 2-9

detA=det(l +AB) 2-9
that is

del(l +AB)=del(l +BA)
]
With the preparations mentioned above, we can give a
few theorems that are the extensions of Boyd's theorem.

3. The extension of Boyd'’s theorem

Let A, R, Q be the coefficient matrices of Riccali equation
with size nXn. H is the determinant of Riccati equation.
throughout this section, we consider A has no imaginary
eigenvalues.

A R

H= ( ) 31
Q AT

It is important to know whether matrix H has imaginary
eigenvalues if we want to have a stable solution for Riccati
equation. Boyd's theorem answers this question, but it is
only available for R=0 and Q0. In this section, we extend
Boyd's theorem so that it can be available for more
sophisticated cases. ‘

At lirst, let us give the Boyd's theorem for comparison.
Let R=BB’, Q=C"C, G(jw)=B'(jwl-A) 'C'C(jwi-A}'B.

Body's theorem."1 Is an eigenvalue of G(jw,) if and only if
Jw, is a eigenvalue of H.

Next, we give the extension of Boyd's theorem under
different sign definite of R and Q.
Casel. R=BB', Q is symmetric .
G1 (jw)=8"(jwl-A) "Q(iwl-A)'B.

Theorem?1. 1 is an eigenvalue of G1(jw ) if and only if jw, is
an eigenvalue of H.
) 32

Proof.

By using equation 2-2 in lemmal, we can obtain 3-3
det(jw J-H)=det(jw J-A)det(jw |+AT+Qfjw J-A)'BB")

=-del(jw I-A)det(jw I-A) detfl-(jw,]-A) *Q(jw,I-A)'BB'] 3-3

jwlA BB

jw l-H= <
Q Jw l+AT



By using equation 2-6 in lemma 2, we have equation 3-4
det(jw, i-H)
=-det(jw,|-A)det(jw I-A) del[l-B'(jw I-A) " Q(w, J-A)'B]

3-4
Because det(jw,-A)#0, we can have a conclusion as
follows.

det(jw,|-H)=0 ¢ det[l-BT(w,I-A) Q(jw,J-A)'BJ=0
& 1EAGIW) S 35
A(G1(jw,)) is the set of eigenvalues of G1(jw,). 0

If R=-BBT, Q is symmetric, then we can have a similar result.
Let R=-BB’, Q is symmetric .
G11 (jw)=-B"(jwl-A)"Q(jwi-A)'B.

Mark 1. 1is an eigenvalue of G1(jw ) if andonly if jw is
an eigenvalue of H.

Let us discuss another case that can be found useful to
explain the property in H™ theory.

Case2. Q=C'C, R is symmetric .
G2(jw)=C(Gwi-A}' R(jwi-A)"C".

Theorem2. 1 is an eigenvalus value of G2{jw ) if and only
if jw, is an eigenvalue of H.
Proof.
‘ jw,l-A -R
Jw,l-H= ( ) 3-6
c’c jw l+AT

By using equation 2-3 in lemmat1, we can obtain 3-7
del(jw |-H)=det(jw I+AT)det(jw |-A+R(jw |+AT)'C'C)
=-det(jw I-Ay del(jw |-A)detl-(jw J-A)'R(jw I-Ay *C'C]
37
By using equation 2-6 in lemma 2, we have equation 3-8
det(jw J-H)
=-det(jw J-A) det(jw I-A)detfl-C(iw,I-A) ' R(jw,I-A) *C']
3-8
Because del(jw,|-A)#0, we can have a conclusion as
follows. ‘
det(jw |-H)=0 < delfl-C(jw -A)'R(jw,l-A) *C']=0
@ 1€ A(G2(w,) 3-9
A(G2(jw,)) is the set of eigenvalues of G2(jw,). 0

If Q=-C'C, R is symmetric, then we can have a similar result.
Let Q=-C'C, R is symmetric .
G21 (jw)=-C(wl-A)'R(jwl-A) "C.

Mark 2. 1is an eigenvalue of G2(jw,) if and only if jw, is
an eigenvalue of H.

We can obtain a conclusion from Boyd's theorem as follows.

.Theorem3. A [B'(jwl-A)-"C'C(jwl-A)'B]=1 if and

only if H has imaginary eigenvalues.

This theorem is proved by the fact that A __ (G(jw)) is

a continuous function of w and G(jw) is strictly proper.
Similarly, we have the theorerns as follows.

Case 3. R=BB’, Q is symmetric .
Theorem 4. A [B'(jwil-A)""Q(jwil-A)'B] 21 if and
only if H has imaginary eigenvalues.

Case 4. R=-BB'", Q is symmetric .
Theorem 5. A mJ—B’UwI~A)"OGwI-A)"B]§1 if and
only if H has imaginary eigenvalues.

Case 5. Q=C'C, R is symmetric
Theorem 5. A __[C(jwl-A}Y’R(jwil-A)"C"]=1 if and
only if H has imaginary eigenvalues.

Case 6. Q=-C'C, R is symmetric
Theorem 6. A __[-C(jwl-A)'R(wl-A)"'C']Z 1 if and
only if H has imaginary eigenvalues.

4. Main theorem

As mentioned in section 1, Riccali equation plays a great
role in the control theory. The stable solution of Riccalti
equation canbe used to establish the optimal control
system. Therefore, it is important to know whether the
Riccali equation exisls a stable solution, that is , whether H
has no imaginary eigenvalues. This question is answered
by the following theorem.

The Riccati equation we consider is given as follows.

A'P+PA+PRP+Q=0 4-1
R =BB', Q is symmetric.
The lemma stated as follows is useful in the proof of
theorem 7.

Lemma 3.% Let P be a real symmetric solution to the
equation 4-1, then P satisfies the unequality.

1-BT(jwl-A) - "Q(jwi-A)'B=0 4.2

Theorem 7. Assume Re A (A)#0. if Riccati equation 4-1 has
a real symmetric solution, then H has imaginary eigenvalues
ifandonly if A __ [B'(jwl-A)" "Q(wi-A)"B] =1.
Proof. Because 4-1 has a real symmetric solution, then

A B (WI-A) - QGwl-A)'B]=1
it H has an imaginary eigenvalue, according to theorem 4,

A, IBTGwl-A)"Q(wl-A)'B]= 1
that is

A JB(wil-A)"Q(jwi-A)'B] =1 for any w

Therefore we finished the proof.



If R=-BB", and Q is symmetric, then we have the same
result as that mentioned above.

Lemma 4. Let P be a real symmetric solution to the equation
4-3, then P satisfies the unequality.

1+BT(jwi-A)-"Q(wl-A)' 20 4-3

Theorem 8. Assume Re A (A)#0. It Riccati equation 4-1
has a real symmetric solution, then H has imaginary
eigenvalues, if and only if A [-B'(jwl-A)""Q(jwl-A}'B]=1.
Proof. The proof is the same as the proof of theorem 7 if we
consider lemma 4 and theorem 5. J

The Riccati equation considered in the H™ control theory
has the feature that is the coefficient matrices R symmetric

and Q=C'C> 0. In this case, we have the following theorem.

Theorem 9. Assume Re A (A)=0. If Riccati equation 4-1
has a real symmetric solution, thenH has imaginary
eigenvalues, if and only if A__[C(jwl-Ay*R(jwi-A)-"C'}=1.
Proof. Let P bea real symmetric solution of the following
Riccati equation.

A'P+PA+PRP+C'C=0 4-4

Because of C’C>0, we have detP+0.
Let P1=P', P1 is symmetric solution of equation 4-5.

AP1+P1A™+P1C'CP1+R=0 4-5
By using lemma 3, we have the following result.
A, JC(wl-A) ' R(wl-A) "C')<1 4-6
If H has a imaginary eigenvalue, according to theorem 5
A _JCGwI-A)'R(wl-A)-"CT]=1 4-7
thatis, A, JC(wl-AY'R(wi-A)"CTj=1 48

Therefore we finished the proof.
O

The theorems stated above have the same condition that
Re A (A)=0. Since the solutions of Riccati equation may
be written in the form P=YX', where Y=[y,y, 'y, ], and
X=[x, x, - x . z=(x] y])" is the eigenvector or general
eigenvector of H. If we put a limitation on the eigenvector
of H, a theorem can be obtained as follows.

At first, let us determine a set E.
E={(x" y')'/ x*Qx=y"Ry, x'y+#0, Vx,yEC '}

Theorem 10. Assume the eigenvector (X" y')T has the
propersity x*y+0. H has no imaginary eigenvalues if and
only if the member in set E is not the eigenvector of H.
Proof. At first, we prove the necessily.

JF2,€C z=(x]y,EE, y, Ry,=x,Qx,

(L 0 =

-Q -A Yy Yo

) 4-9

From equation 4-9, we can oblain two equation.

Ax, +Ry,=2 X 4-10
-Qx,-Ay=4,Y, 4-11

Let y,*(4-10)+x,*(4-11),
¥, Ry,-x, "Qx, +y,"AX, X ATy = A (Y, X, 4%, 4-12

Equating the real part and imaginary part of 4-12.

y, Ry,x, “Qx, =Re A, 2Fha(x°'yo ) 4-13
Im(y,"Ax,)=Im A - Re(xy,) 4-14

accoding to the fact that z,€ E, from 4-13 we have

Casel: Re A =0

Case2: Re(xy,)=0

Consider case 2 as follows.

lety,* X(4-10),

y, Ax, +y, "Ry = Ay X 4-15
Because Im(y,’Ax, )=0,the left side of (4-15) is real number
We have Re A =0 since Re(y,"x, )=0.

Thatis, if z,€ E is eigenvector of H, then H has imaginary

eigenvalue.lt contradicts to the condition that H has no

imaginary eigenvalue.

Next, we prove the sufficiency.

Supposing that H has imaginary eigenvalue.

thatis, 3w,ER, z=(x,"y,) ECX

Let jw, is eigenvalue of H, z, is eigenvector corresponding
fo jw,.

Hz, = jw z, 4-16
it is the same as the proof of necessity, finally we have
equation 4-13,
that is, Yo RY,=x,"Qx,, 2 €E. -

Itis a contradiction to the condition that the member of E
is not eigenvalue of H.

O
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