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ABSTRACT

An optimal controller, e.g. LQG controller, may
not be realistic in the sense that the required control
power may not be achieved by existing actuators,
and the measured output is not satisfactory. To be
realistic, the controller should meet such constraints
as sensor or actuator limitation, performance limit,
etc.

In this paper, the Input/Qutput Vanance
Constrained (IOVC) control problem will be
considered from the viewpoint of mathematical

programming. . A dual version shall be developed to
solve the 10VC control problem, whose objective is
to find a stabilizing control law attaining 4 minimum
value of a quadratic cost function subject to the
inequality constraint on each input and output
variance for a stabilizable and detectable plant.

One approach to the constrained optimization
problem is to use the Kuhn-Tucker necessary
conditions for the optimality and to seek an optimal
point by an iterative algorithm. However, since the
algorithm uses only the necessary conditions, the
convergent point may not be optimal solution. Our
algorithm will guarantee a sufficiency.

1. Problem Statement

Consider the following stabilizable and detectable
plant

ApX + Bpu + Dpw } (l.la)

Cpx ,

[ .
0oy

where . ,u and y are the vectors of state, input and
output, respectively. A white noise, w, is assumed
to have intensity W; ;

x =[x, xz =, xnl"
u = [uy, vy =, unl?

, U2, *, Un b
w o= [wi, wa =, wall l (1.1b)
y = lyn yo = yal

The control problem under consideration is

following;

QVC Control Problem

Find a stabilizing linear control law, u, attaining a
minimum value of a quadratic objective function
subject to the inequality constraint on each input and
output variance for the given system (1.1), i.e.,

min

u€eQ Jw
. . . (1.2a)
subject to {F"’ vy < 012, ' 1 ny
Eoui <@, j =1, ny

where
J(u) = Eo ( y"Qey + uReu ) (1.2b)
Q@ = { ulu = stabilizing control law } , (1.2¢c)
Ee(+) = lim E ( +(t)} (1.2d)
and Q. is a given positive semi-deflinite output

weighting matrix, R, a given positive definite input
weighting matrix, of the given upper bound of the
i-th output variance, nf the given upper bound of the
j-th  input variance and E(¢) indicates the

expectation of ( ¢).
n

A similar control problem was considered in [1].
When only the output variance constraints are
imposed with Q, = 0, the problem is called Output
Variance Constrained (OVC) control problem and has
been extensively investigated by several authors
[2-6]. A companion problem called the Input
Variance Constrained (IVC) control problem is also
considered with Ro, = 0 and only the input variance
constraints [2,7].



Problems of the type (1.2) have also been solved
by [8,9] by using a deep cut ellipsoidal algorithm [10]
that tests for feasibility and provides both upper and
lower bounds at each iteration. This allows one to
computer and answer within a specified degree of
accuracy. One approach [2-7] to the above problem
may be to use the well-known Kuhn-Tucker
necessary conditions for the optimality and to seek
an optimal point by an iterative algorithm.
However, since the algorithm uses only the necessary
conditions, the convergent point obtained by the
iterative algorithm is not, in general, guaranteed to
be an optimal solution to the problem. We shall
provide a dual version of 10VC control problem (1.2),
whose solution is also a solution to the above
problem. Hence a sulficiency is guaranteed.

2. Dual Problem

In an effort to get a dual version, we first
consider the following problem intimately related to
the problem (1.2);

min

ueg (2.1a)

L(u,q,r)

where

Mz

L{ugr) = J(u) + di (Ew yi - of)

O
=

(2.1b)
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the parameters q and r are fixed vectors whose
elements are nonnegative, i.e.,

a=lai, qz =, Al @ 20, i= 1 =, ny,(21c)
r=lry, r2, ~, rad, 1 20, j= 1, =, ng.(2.1d)
|

The Lagrangian L(u,q,r) can be rewritten as follows;

Liuar) = Eo [ y"Q(a)y + u"R(r)u ]

2.2
_ qToz I (2.24)
where
Q(q) = Qo + diagla) , (2.2b)
R(r) = Ro + diagir} , (2,2c)
o’ = [0} o} -, %17 , (2.2d)
w? = [nf wd -, WA, (2.2e)

where diag{ ¢} is the diagonal matrix -with the i-th
diagonal element equal to the i-th element of vector

.. One may immediately observe that the above
Lagrangian (2.2a) is simply the objective function
with the weighting matrices Q(q) and R(r) in a
Linear Quadratic (LQ) or Linear Quadratic Gaussian
(LQG) optimal control problem [11], save the terms
a"o? and r"v? which are constant. Since we are
looking for an optimal (not suboptimal) control, we
exclude the static output feedback control (whose
solution is not guaranteed to be unique) so that the
uniqueness of the solution to the above Lagrangian
problem is ensured. It will be seen later that the
uniqueness is critical in our development.

It is said that (u, q, 1) is a saddle point for the
Lagrangian function L(u,qr) if

LU, q 1) <Ly q 0 for all ue@  (2.3a)
and

L(u, g 0 2 L(u, q 1) for all @20 and r20, (2.3b)

Then the following theorem provides a sufficient
condition for u to be a solution to the IOVC control
problem (1.2);

Theorem 1 [12]
Letu €2, gq20andr20. Then (v, ¢ 1) is a
saddle point for L{u,qr) if and only if the following

conditions are satisfied;

(a) U solves the Lagrangian problem (2.1) with
a=qand r=T.

-2 2 .
Ew < of, =1, -, and
) [Be ¥y Sofi=L-n e
Exo uj < i, 1 = L, » Nu
() { Q(E= ;iz -6 =0 i=1 -, n, and
T(Ee ;:2 -H) =0 j=1 -, n

Here Eo ;lz is the i-th output variance when the
(1.1).

is a saddle point for

control law, u, is applied to the system

Furthermore, if (u, @ D
L(u,q,r), then u solves the IOVC control problem

(1.2).
=

Notice that the first saddle point condition (a) in
Theorem 1 is a minimization rather than a
stationarity, as opposed to the Kuhn-Tucker
necessary conditions for optimality. In fact, only
the first condition is different from the Kuhn-Tucker
conditions.  The exploitation of the minimization of
the saddle point conditions will be a very important
step for developing a dual version of the IOVC
control problem (1.2). The following corollary
provides the uniqueness of the solution of the
Lagrangian problem (2.1);



Corollary 1 [11)

Suppose that the paramelers q 2 Oand r 2 0 are
given, and that the plant (1.1) is both stabilizable
‘and detectable. Then the solution in the condition
(a) of Theorem 1 or the solution to the Lagrangian
problem is unique, and the resulting closed~loop
system is guaranteed to be asymtotically stable.

|

In order to ensure the sufficiency of the solution,
the parameter ¢ and 1 to be used in the Lagrangian
problem (2.1) must be chosen so that other conditions
() and (c) in Theorem 1 are also satisfied.
However, arbitrarily choosing ¢ 2 0 and T 2 0 will
not lead to the satisfaction of the conditions (b) and
(c). As a result, the IOVC control problem (1.2)
may be viewed as a search for a positive
semi-definite diagonal matrix -diag (q] in (2.2b), and
a positive semi—definite diagonal matrix diag [r] in
(2.2c), to be used in the Lograngion problem (2.1), so
that the conditions (b) and (c) in Theorem 1 are
satisfied. A similar observation is also made in [2].

The following theorem shows that even if the
solution of the Lagrangian problem with arbitrarily
chosen q 2 0and T 2 0 does not satisfy all the
conditions in Thcorem 1, it provides the solution to a
closely related problem;

Theorem 2 [13]

Let U €2 be the solution of the Lagrangian
problem with arbitrarily chosen ¢ 2 0 and T 2 0, and
define

«, ny, and

=, Dy,

where y is the output vector achieved by u. Then
u solves the following modified IOVC control
problem;
neq JW
. —2 . (2.4)
subject to [Em Y[2 < E‘z' 1 = 1, ", Dy
Eouf < 1y, j=1,~, na
n

Suppose there is no solution to the 1I0VC control
problem (1.2). Even in that case, by obtaining a sct

of o’'s and W's for different q's and u's,
Theorem 2 may still tell us which input and output
variance constraints can not be satisfied and how
closely we can achieve the required performance, and

so forth.

Now we provide a dual version of the IOVC
control problem, which is motivated by Theorem 1;

A Dual Version of I0VC Control Problem

(q"f;xew h(q,r) (2.5a)
where
h(ar) = 120 Lluwan, (2.5b)
q20,r20 and
¥ = l(gr) i (2.5¢)
ueQ L(u,q,r) exists
|

Notice that the Lagrangian problem is an LQG
control problem, and that by Corollary 1 the unique
solution of the LQG problem always exists under the
assumption of stabilizability and detectability.
Hence the domain of definition of h(q,r) becomes

¥={(gnlq=20andr 20). (2.6)

In general, the set of all stabilizing control laws,
Q, is open and unbounded. However, under a mild
restriction, we can get a compact set. The
following theorem is very important for developing
the relationship between the IOVC control problem
(1.2) and its dual version (2.5); :

Theorem 3 [14]

For givenq 2 0, r 2 0 and a stabilizing control
law 1€ define a level set

Q= {ulLuygr) < LGagr }. (2.7)

Then the set Q is closed and bounded, or compact.
||

Notice that by choosing 1 such that L(§,qr) is
very large, we can make Q@ almost the same as Q.
From now on, for the set of stabilizing control laws,
we shall use ? in lieu of 9.

3. IOVC Algorithm

Before we give a solution algorithm to the dual
version to the IOVC problem, some properties of the
dual function h(q,r) are given in the following
lemmas, whose proofs are given for completeness.



Lemma 1
h(q,r) is a concave function over the convex set ¥.
Proof :

Let (g, )€Y and (g, 1)e¥. For 0 < a < 1,

h{ a(g,T) + (1 - a)gn )

- M L a@b ¢ (1 - a(@h)
- :‘ei"Q ld Lud P + (1 - @ Lyd»l
>a L’I“E‘"Q L(ndd + (1 - @ Ténh L{4,g,t)

e h(@® + (1 - @) h(g,D)

i

This implies that h(q,r) is a concave function. The

convexity of the set ¥ (2.6) is obvious.
]

Lemma 2

The inequality h(q,r) £ J(u) holds for all (qr)€¥,

and for all ue® satisfying the constraints of the
I0VC problem (1.2).

Proof :

From the definition of h(qg,r) in (2.5a),

han) < Jw + 3 a (Eayf - o)

+ ’)‘:l 1 (Eeuf - ud)

Then for ue? satisfying the constraints of the IOVC
problem (1.2), it is clear that

h(q,r) < J(u)
]

Lemma 2 may be utilized for a stopping criteria in
an iterative algorithm since the optimal value of J(u)
is bounded by both h(q,r) and J(u).

Lemma 3

hiq,r) is differentiable at (g, r)€¥, and the partial
derivative is given by

ah -2

= Ee yi - 0} , (2.8a)
3di | (gn-(3D '
gh = Eo u’ - W, (2.8b)
I gn=ad

where vy is the output vector when the control law is
W, which is the solution to the Lagrangian problem
with (qr) = (qD.

Proof :

For a given (q,r)€¥ L(ugr) is minimized over ©
at a unique point (see Corollary 1). From Theorem
3, the set Qis closed and bounded. Then from the
Corollary 1 in [12, p426], the lemma is proved.

| ]

The relationship between the IOVC control
problem and its dual version is now given in the
following theorem;

Theorem 4

Let (g, r)€¥ solve the problem (2.5). Then the
unique solution to the Lagrangian problem (2.1) with
(q.r) = (g1 solves the IOVC control problem (1.2).

Proof :
Since h(q,r) is differentiable at (qr) = (qr) by
Lemma 3, the following optimality .conditions for the

problem (2.5) should hold;

(a) If @ > 0 and T >0,

_dh e R, T o 2
dau I (aD=(3,D) Be 01 o 0,
2h -2 2
L = EBow - #=0,
an I(q.r)=(i?) : i
b)If ¢t=0and 1 = 0,
ah —2 2
2 = Fe -et<o0,
3 | gn-an y '
dh —2 2

= Eo w - 4 £0,
In '(u.r)=(a?)

The above conditions together may be written as

Ew ;lz <6f, i=1 -, ny,
Ee w' <uf, j =1 ~ n,
and
{(_ll(E-n Yo-oh=0i-=1, , Ny,
H(Ee 1o - #) = 0, = 1, =, n

These conditions, together with the fact that u solves

the Lagrangian problem with (q,;r) = (q,r), imply that
(u,q,r) is a saddle point (see Theorem 1). So, by

Theorem 1, u solves the I0VC control problem (1.2).



Based upon the above theorem, we provide a new
algorithm to solve the IOVC control problem.
Notice that since the dual version (2.5) is a convex
programming problem (see Lemma 1), any solution of
(2.5) will be a globally maximum point [15].

IOVC_ Algorithm

Enter Ay, By, Co, Dy Wp Qo 2 0, Ro > 0, ¢ 2 0
and r'® > 0. )

Step 1. Set k = 0.
Step 2. Solve the Lagrangian problem (2.1) with
Qlq) = Qo + dinglq™] and R(r) = Ro + diaglr ™).
Step 3. Calculate the value of the dual objective
function h(q,r) in {2.5b) and, if necessary, .

. . 2 [l
the derivatives 32 and alrl by (2.8).

Step 4. Set k = k + 1 and utilize the information
obtained in Step 3 to update ¢ and r®
as follows;

k+1 (k;
{?((kq))} = [?(k))} + as®™

where d is the step size and s™ is the

search direction.
Step 5. Repeat Steps 2 to 4 until convergence.

]

Notice that in Step 4, ¢ and s™ should be
calculated so that ™" 2 0 and r*"- 2 0 must be
satisfied. They may be obtained by any existing
algorithm [15] under the - constraints
a®? 20 and 1" 2 0. For the LQG control law,
h(q,r) and its derivatives at the k-th iteration are
given by [7],

h@®r™ = & [(K + LD,W,DF + LFVFT
0T 2 (0T, 2 (2.9a)
R A S
dh | -y - a?
aq (qm_rm> ’ (2 gb)
dh ' -y - uz .
3 T (q (.),I’ (I))
where

0=KA,+ATK-KBR (r "BiK+CIQ(q")C, , (2.9¢)

0=PAT+A,P-PMIV '"M,P+D,W D5 , (2.9d)
0=(Ap-FMp) L+L(Ap-FM) +GTR(r ™G,  (2.9)
0=(Ap+ByG)Xc+ Xo(Ap+BG)T+FVFT ,  (2.91)
G=-RU(r™BK , (2.9g)

F=PM;V™, {2.9h)
[Co(P + X)Cplu
v = |[Co(P + XCi)a | (2.9i)
(Co(P + XICT] iy
[GXGTIn
U = [_GXCGT]ZZ (2.93)

(GXGT] nane

where { » ]i denotes the (i,i) element. The following

Kalman [lilter is used above;

Xc = (Ap + ByG - FMp) x. + Fz ,
z Mpx + v,
u Gz,

(2.10)

where M, is the measurement distribution matrix and
the measurement noise v is assumed to be a
zero-mean Gaussian white noise with intensity V.
Notice that (2.9d) is not dependent upon the iteration

number k so it is calculated only once during
iteration. In other words, the filter gain, F, is
fixed. Hence one Riccati equation and one

Lyapunov equation are to be solved to evaluate either
h{q,r) or its derivatives for Steps 2 to 4. The
I0VC algorithm given above may be used extensively
for selecting a set of actuators from given set of
candidate actuators while output variance constraints
are satisfied [16].
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