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Abstract

A new method of quaternion feedback control for the
attitude acquisition of spacecraft is suggested to limit the
angular rates of rigid body which are not desirable and make
a control algorithm complicate. New attitude acquisition
control algorithm is evaluated and compared with the
existing quaternion feedback control method for the large
slewing maneuvers through simulations. The simulation

results reveal that a new method is effective on limiting the .

angular rates of spacecraft.

1. Introduction

Currently, there are so many satellites in
Geosynchronous Orbit(GEO), Sun Synchronous Orbits,
Molniya~ Orbit, Low FEarth Osbits(LEO), etc. for
communication, scientific tests, and remote sensing
purposes. In general, the Earth orbits below 1000 km are
called LEO and GEO, about 36000 km above the Earth.
The key factors in altitude selection are the satellite's
radiation  environment and  mission  objectives.
Consequently, GEO is mainly selected for the
communication purposes and LEQ for the scientific tests or
remote sensing purposes. Recently LEO are adopted for
mobile communication services using multiple satellites, so
called constellation structure. Payloads in LEO include
those for reconnaissance, detecting nuclear bursts, local
weather and hydrology, oceanography, agriculture, etc.
Therefore, a lot of interest in LEO satellite has been
continuously shown by aerospace industries since 1960's.
However, LEO satellites are exposed to more
environmenta! disturbances than GEQ satellite is, and the
attitude control systems of LEO satellites are generally
more complicate than ones of GEO satellites because of
fragile environmental disturbances and short circular period
of orbit. Four major disturbances on LEO satellites are
gravity-gradient effects, magnetic-field torques on the
vehicle, impingement by solar-radiation particles, and
aerodynamic torques.

For GEO satellite case, large slewing maneuvers are
generally required for the apogee kick motor's(AKM) firing
attitude to inject into the GEO and for the Sun-Earth
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acquisition to get the nominal mission mode attitude. It is
expected that LEO satellites require large slewing
maneuvers more frequently than GEO ones, that is, the
short circular orbit period and the environmental
disturbances sometimes require large slewing motion so as
to meet antenna pointing accuracy requirements for the
efficient data transfer/communication, or to observe a target
as fast as possible because of the short ground contact time.

It is known that a direction cosine matrix, Euler angles,
or quaternions can specify the orientation of a rigid body
and the use of quaternions for large slewing maneuvers is
very attractive since they do not have inherent geometrical
singularity. The quaternion feedback concept for an attitude
regulator was first introduced by Mortensen! in 1968.
Wie2,3, et al. studied on the large slewing control of
spacecraft using quaternion feedback control laws
extensively. However, limiting angular rates of spacecraft
was not mentioned in his study, which may be of benefit to
controller design. Thus, the quaternion feedback control
algorithm suggested by Wie3, is modified to limit angular
rates of a rigid spacecraft for large slewing control. The
rigid dynamic model of a satellite is considered to test the
proposed method in this study. It is assumed that three axes
information of angular rate from rate gyros is available. The
suggested control algorithm is evaluated and compared with
Wie's results for the practical point of view through
numerical simulation.

2. System Modelin

In this paper, it is considered that the body-fixed torque
devices are used for general case of a rigid body slewing
maneuvers. Though the dynamics of body-fixed torquing
devices( thrusters, reaction wheels, and control moment
gyros) should be considered in system modeling for control
design, an ideal control torquing device is assumed in
modeling for simplicity. A body-fixed frame is considered
with axes coincident with a rigid body's principal axes. The
mathematical formulation of attitude dynamics may be
found in the common text books.4:5

The angular momentum vector H, of a single rigid body
referred to an inertia frame may be expressed as



A=1a , )
where 0 =0, 0, mz]T is the absolute angular rate vector
relative to a body-fixed frame, and 7_ is the inertia matrix of
a single rigid body. The rotational motion of a rigid body
about body-fixed axes with the center of mass can be
represented by Euler's equations.

H+QH =T | @)
where Q is a skew-symmetric matrix defined by

0 -0, o
Q=lo, 0 -o, ©)
-0, o, 0
, and control torque vector, T, = {T,, T, T.T.
Then, the dynamic equation of a rigid body is expressed as

1o =-QUa+T, )
It is assumed that rate gyro can measure the angular rate
components along the body-fixed axes, which may be used
to calculate the body orientation and to feed them back.

The Euler's principal rotation theorem states that a rigid
body can be rotated from any initial attitude to any final
state by a single rotation of the body through a principal
angle ¢ about eigenaxis. The rotation may be expressed by
introducing quaternions. The quaternions, also called Euler
parameters, consist of the vector part and the scalar part.
The vector part represents the direction of the eigenaxis.
The four elements of the quaternion are defined as

g, = cos($/2)

q =e,sin(¢/2)

g =e,sin(¢/2) )
q, = e,sin(/2)

with qg +ql2 +q§ +q:,2 =1

where ¢, is the direction cosine of the eigenaxis in the
reference frame. The quaternion is used to describe the
orientation of a rigid body by

4=-Q7+-q0
2 1_,_2 (6)
G0 = _Em q

where g =1[g, ¢, ¢,]’ and Q is the skew-symmetric matrix.
Equation (6) is called the quaternion kinematic equation.

3. Quaternion Feedback Control

The linear quaternion feedback law suggested by
Mortensen takes the following form:

T,=-kq-do, i=123. @)
Mortensen suggested the design criterion by choosing the

control gains k; to be inversely proportional to the principal
moments of inertia. Recently, Wie3 suggested a feedback

controller for eigenaxis rotations and the modified design
criterion for the control gains with the following form:

T =-Ql&-Kq-Do 8)
k=(d,+B)" ,i=1,23 t))
where Q is specified in equation (3), /, is the moment of
inertia matrix, ® is the absolute angular rate vector, K=
diag(kq, kp ,k3}, D= diag{dy, d2 ,d3}, I, is the principal
moments of inertia, and o, P are scalars. The diag(*) stands
for a diagonal matrix. He showed the control law to be
globally stable and to be robust to inertia uncertainties using
Lyapunov second theorem. Lyapunov function3 used has
the following form:

v:%a’xlﬁn(l—qﬂ) (10)

The global stability is guaranteed if d; is a positive scalar
and o, B are nonnegative scalars. As seen in equation (8),
gyroscopic decoupling torque is included in the control law
to cancel out gyroscopic coupling term. However, the
coupling term may be neglected in equation (4) if the
angular rates of a spacecraft can be kept very small during
slewing maneuvers. Thus, Equation (9) is modified to limit
the angular rates as following:

k. = (scale_ factor *al ; +B)"' )]

The modified quaternion feedback control algorithm can be
summarized as

BEGIN
if abs(w;) >,

n=n+1

if n > nppax

N= Nmax

scale_factor = @, /(n*abs(w))
else scale_factor = |
k; = /(scale_factor*al + )
T, =-kg -dp,
END

As seen in equation (11) and the summarized algorithm, a
scale factor and a forgetting factor n are introduced to get a
varying weight( scale factor ), which may be one of gain
scheduling methods of inertia part. Note the scale factor is
always greater than zero. Thus, the closed-loop system with
the proposed quaternion feedback gains is always stable.

4. Simulation Results and Discussions

For the simplicity, the products of inertia are neglected
for the simulation because these terms may be considered as
model uncertainty for slewing control problem: I.=
diag{ 1400, 1700, 1800}Kg-m is selected for the moment of
inertia of a rigid body spacecraft. The numerical data,
(4% 9 4 9,) = [0.159 0.57 0.57 0.57] is used for the initial
quaternion elements at t=0 and zeros for the initial angular
rates. [1 0 0 0] is selected for the final quaternion elements.
Thus, the eigenangle required to be rotating is 161.7 deg.



Initially, o = 5.e-7, B = l.e-4, and' d = 0.316 are selected
for the simulation. The difference between the suggested
modified method and Wie's method is that o is used as a
varying weight factor to limit the angular rate of a rigid
body in the suggested technique but is a constant value in
Wie's one. Figures 1, 2, 3 show the time histories of the
control torques for x, y, z directions, respectively. The
angular rate profiles of x; y, x axes are shown in figure 4, 5,
6. The maximum angular rates are about (-0.1), (-0.075), (-
0.085) rad/sec for each axis with Wie's method but the use
of modified method can limit the angular rates less than (-
0.04) rad/sec. Figures 7, 8, 9, 10 depict the time histories of
quaternion elements, ql, q2, q3, q0. The reorientation time
is about 40 sec. with Wie's method but the modified method
takes about 80 sec. for reorientation, which is two times of
the result of Wie's method. Figures 11, 12, 13 show the
scale factor variations of the quaternion elements, ql, g2,
and q3, respectively. As seen in figures, though the angular
rates can be limited by the modified method, undesirable
chattering phenomena are observed in the control torque
and the angular rate profiles. Currently, another modified
method is studying to fix this problem, such as using a
smooth filter before actuating, as well as torque limiting
maneuvers.

5._Conclusions

The quaternion feedback control problem has been
studied for an inertially symmetric rigid spacecraft with
independent three-axis control troques. A novel technique
has been presented for the attitude acquisition of a rigid
spacecraft. It has shown that the angular rates of a rigid
spacecraft can be limited effectively using the modified
quaternion feedback control method. The undesirable
chattering phenomena have been observed in control torque
and angular rate profiles. The chattering phenomena should
be removed for practical applications, which will be the
future work.
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Figure 1. Time History of X-Directional Control Torque
(New method: solid, Wie's method: thick dotted line)
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Figure 2. Time History of Y-Directional Control Torque
(New method: solid, Wie's method: thick dotted line)
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Figure 3. Time History of Z-Directional Control Torque
(New method: solid, Wie's method: thick dotted line)
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Figure 4. Time History of X-Directional Angular Rate
(New method: solid, Wie's method: thick dotted line)
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Figure 5. Time History of Y-Directional Angular Rate
(New method: solid, Wie's method: thick dotted line)
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Figure 6. Time History of Z-Directional Angular Rate
(New method: solid, Wie's method: thick dotted line)
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Figure 7. Time History of Quaternion Q1
(New method: solid, Wie's method: thick solid line)
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Figure 8. Time History of Quaternion Q2
(New method: solid, Wie's method: thick solid line)
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Figure 12. Time History of Scale Factor for Quaternion Q2
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Figure 9. Time History of Quaternion Q3
(New method: solid, Wie's method: thick solid tine)
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Figure 10. Time History of Quaternion Q0
(New method: solid, Wie's method: thick solid line)
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Figure 11. Time History of Scale Factor for Quaternion Q1
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Time History of Scale Factor for Quaternion Q3



