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Abstract

A compliance control method of redundant manipulators is pre-
sented. This method is based on the new stifiness model, which
allows ns to modulate accurate joint stiffness of realizing the end
effector stiffness to be varied with task requirements. Control model
is developed and by implementing the proposed method in a three-
dof(degree of frecdom) planar redundant manipulator, its effective-
ness is validated.

1 Introduction

In robot manipulators interacting with environment, the capabil-
ity of compliance control is prerequisite. Up to now, though a lot
of approaches have been proposed. the compliauce control is clas-
sified into two main categories after all, i.e. hybrid position/force
control(1] and impedance control2}. In this paper, we address the
stiffuess control issue as one of the impedance control schemes, cs-
pecially that of redundant manipnlators.

The stiflness control was originated from Salishury(3]. In the case of
redundant manipulators, this controller has limitation that the null
space is left uncoutrolled but the end effector can be stationary in
unconstrained situation if joint friction is adequate to keep the null
space motion from drifting and dynamic disturbances are assumed to
be negligible. On the contrary, if the stiffness controlled manipulator
contacts with the environment, that is, static forces arc excrted at
the end effector, the manipulator can not preserve its confignration
any morc and collapse. The static force generates seme disturbance
torque and it makes the joint confignuration nnstable.

In fact, there have been a lot investigations concerning the stiffuess
control of redundant manipulators|[4-6], and they provide their own
method of specifying the joint stiffuess corresponding to the given
taskspace stiffness. However, they are basically derived from the
stiffness model of Salishury[3], that is, the congrnence mapping of
stiffnesses[11]. and in this model, there is no consideration on the
cffect of the static force. According to Yi et.al[8)] the stiffuess char-
acteristics at the joint depends on the direction of end effector force
awd manipulator configuration, and Mussa-Ivaldi and Hogan{7] de-
vived a stiffuess model considering the effect of static force although
they didn’t tonch the stiffucss specification at the taskspace. That
is. the previons model may not be enough to describe the stiffuess
relation and the effect of static force is required to be included in
the model.

In this paper, we present a new stiffness model derived from static
force equilibrinm. In this model, the effect of static foree is intro-
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duced in terms of equivalent stiffness, called induced stiffness ob-
tained from configuration change and force(ISOC), and the accurate
relation between foree and deflection is represented. It lets us know
which torque should be imposed to realize the desired stiffuess and
restoring force at the end effector. Conversely, it makes it possi-
ble to evaluate the resultant joint stiffness. Bascd on the developed
stiffness model, we propose a stiffuess control scheme, called orthog-
onal stiffnesa decomposition, control(OSDC). OSDC is implemented
in a threc-dof planar redundant manipulator adopting tendon driven
method and its effectivencss is confirmed by conducting several ex-
periments.

2 Stiffness Modeling

In this section, we establish the stiffness model describing the rela-
tions among taskspace stiffness, joint stiffiuess and static force. Kine-
matic redundancy is usually used to indicate the excess of actively
controlled dof at. the joint space with respect to that of the taskspace.
Here, the taskspace kincmatics is described by N- dimensional posi-
tion vector £ = [ 7, --- xy )7 that specifies the location of the end
effector with respect to an absolute coordinate frame. The manipu-
lator configuration is fully described by an n--dimmensional vector of
generalized coordinates ¢ = [ 1 -+ ¢, |7, and redundancy is ex-
pressed by the inequality N < n. The forward kinematics is a vector
map

z=F(q), (1)

from configuration to end effector position, where F € RY is a vector
function assnmed to be twice differentiable in the entire workspace,
The differential transformation from joint displacement to end effec-
tor displacciment is

dz = J,(q)dq, (2)

where J,(g) = 0F (g)/dq € RV*" is known as the Jacobian of
the manipulator, Assuming the frictional and dynamic forces are
compensated for or small enough to be neglected, we can compute
joint torgue r =1y --- 1, ]’r necessary to apply an end effector force
F=[h-fn ]T according to the static relation

r=J7(g)f . (3

Also, it has been found usefnl to be able to superimpose bias force on
the stiffness hehavior[3] and thus, we suppose that the manipulator
be at static equilibrinm with its bias force f . where we have z, =
F(q,) and 7, = J;r(q,,)fc,. Now, if the manipwlator is deflected by
dz and going to increase the exerting force by df as illustrated in
Fig. 1. the manipulator should move to another static equilibrinm



dx environment

Figure 1: Model of redundant manipulator

at the changed configuration g, + dg with the changed force f and
torque 7 such as

T=J7(g,+dq)S . (4)

Also, the definition of stiffness provides us the following auxiliary
stiffness relations.

T

7o+ Ko(q, - q), (5)
J = J.+K.(zo-2), (6)

where Kg € R"" and K, € RV*V are the stifinesses at joint and
taskspace, respectively. Differentiating Egs. (5) and (6), we get

dr = -Kidq, (7)
df = —-K.,dz. (8)
The Jacobian matrix at the righthand side of Eq. (4) can be ex-
panded using Taylor series such as
aJ7(q,)
]

Substituting Eq. (9) into the right hand side of Eq. (4) yields the
result

IT(g. +dg) = T (q,) + dg . (9)

aJ7(q,)
q
—§af - (10)

T(go+dq)f = J7(g.)f+
In addition, the last term in the righthand side of Eq. (10) is rear-
ranged as :
87 /(g.)
—5——daf = Alq,. f)dq, (1
q
where the 7th row and the jth colunm of A{q, f) is obtained as
follows:

N
A(qJ)“'”é,,E_:, 5%2.5—(‘1‘,-“’ (12)
Using Eqs. (7), (8) and (11), Eq. (4) will be
- Kydq = I7(g,)4f + A(go. £)dg . (13)
and the chain rule gives us
df = -K,Ji(q,)q. (14)

Substituting Eq. (14) into Eq. (13), we get the result
Ko =J0(0)K-Jo(q0) — B(gor f) - (15)

The above Eq. (15) describes how to specify the joint stiffucss of
realizing the desired taskspace stiffuess K,. According to the con-
ventional approaches(3} there is no consideration of A(q,, f) and the

joint stiffness is just determined by the congruence transformation
of K.. A(q,,f) is termed as the induced stiffness obtained from
configuration change and force(ISOC) in this paper, which is the
function of the exerting force and the configuration of the manipu-
lator. Here, note that the exerting force f is the summation of bias
force f, and incremental force df caused by the taskspace stiffness.
1f f, = O and'df is ncgligible, Eq. (15) comes to the conventional
stiffness model(3]. However, as long as the mauipulator is desired
to exert controlled force in the reasonable range of motion, ISOC
should be taken into account.

Conversely, let us derive the resultant taskspace stiffness for the
given joint stiffness Ky and end eflector force f. Eq. (13) can be
reformulated as follows:

~ [ Ko+ &g, ) |dg = IT(g,)f - (16)

Assuming that Det [ K, + A(g,, f) ] # 0 and inverting the premul-
tiplying term of dq yields

de = —Jo(qo) [Kq+A(go £)]7 IT(go)df . (17)
—K;lllf

it

Therefore, the taskspace stiffness K, is written hy

K. ={Jy(q.) | Kq + A(go, 1)} T (go) ). (18)

Finally, assuming G(q) is the joint torque cquivalent to the gravity
force acting on the links of the manipulator, Eqs. (15) and (18) will
be changed to

K, = J](9)K.J4(9.) ~ A(gos £) — By(or fy) « (19)
K. = {J3(g)|Kq+ Algos £) + Ag(q0, £ 7' T (20)} "1 (20)

where f denotes the gravity force, and A(-, ) is ISOC induced by
the gravity force such as

9G(g,)

Ay(qo, fg) = g

(21)
Now, we dcfine quéKq + A(go, f) + Ay(go. f,) and examine
Eqgs. (19) and (20). It is noticed from Eq. (20) that the effective
stiffness at the joint appears to be K. K, is the actual stifi-
ness to determine the responsive torque for the joint disturbances
and thus, the stability of joint configuration depends on K. Re-
membering that the stability of elastic system is determined by the
positive dcfiniteness of the stiffness matrix, it is stated that ISOC
may lead the system to unstable state, while the stable joint servo
stiffness is given. Secondly, if the joint servo stiffness is specified by
Eq. (19), ISOC is compensated at the joint and the cffective stiffucss
at the joint will be that of the conventional stiffness model. There-
fore, the stiffness control problem can be treated in the same way as
the previous ones that is going to be discussed in the next section.

3 Orthogonal Stiffness Decomposition
Control

In the previous section, we presented a new stiffness model to de-
scribe the relations among the exerting force and the corresponding
stiffnesses. Eq. (20) offers forward stiffness computation model and
Eq. (19) docs backward stiffness computation model, that is, stiff-
ness control model. Based upon these formulation, a stiffness control
method named orthogonal stiffness decomposition control{ OSDC) is
proposcd, which provides a proper way to compensate ISOC and
specify null stiffuess.

Let us suppose that the manipulator at initial configuration ¢ = q,
is deflected and exerts the end effector force f. If the joint stiffness
is specificd by Eq. (19) such as

Kl? = J:(qo)KrJq(Qo) - A(qov f) - Ag(qoy fg) +
i{q_A(QDyf)_Ay(quy)v (22)



where I.(vé.]:'(qq)K,.Jq(qo). Then. the effective servo stiffness at
the joint will be

K. = JI (@)K, J,(q,). (23)

and it can be perceived that the stiffness model conies to the cou-
ventional one. Now, the behavior of the maniputator depends upon
the characteristic of i(,, but it is known to be singular in the case
of rednudant manipulator. The problem comes to the derivation
of a positive definite joint servo stiffness i(,, resalting in the speci-
ficd taskspace stiffness, that is. the specification of null stiffness. In
this paper, we employ the following method of computing the null
stiffuess|5].

If K, is decomposed by using similarity transform[11], a diagonal
matrix A, having eigenvalues as its diagonal elemients is obtained.

A, H K. H, (24)

diag{ A, Az, -o5y A ) (25)

where the columns of the orthogonal matrix H(H™' = HT) are
the eigenvectors corresponding to eigenvalues Ay, Az, --- A, of K,
vespectively and

M2A 2 2 A ZAvp= =2 =0, (26)
Here, a new matrix Ay is defined with the non-zero diagonal ele-
ments A; > 0 (N 41 < i < n)instead of zero diagonals for
Eq. (25).

A, = diag(0, 0, .-+, Antts ooy An )y (27)

Even if the zero eigenvalues A; (N +1 < i < n) is shifted to
arbitrary positive values A; the orthogonal matrix H remains the
same, since the matrix Ap is always orthogonal to the matrix A,,.
Thus, a new diagonal matrix A is defined as the summation of A,

and Ap.

A=A, + Ay, (28)
If A is transformed reversely, the result consequently comes to he
K,=JTK.J,+K,, (29)

where K,,_ﬁ.HA,.HT.
tained by

Finally, the complete joint stiffuess is ob-

K,=J,K.J,+Kn-Agof) - Bg(q0.f,) - (30)

The matrix K, enables us to directly assign new nonzero eigenvalues
X (N+41 <i < n)in the direction perpendicufar to the hyperplane
in which K, les. The Ai's determine the magnitude of the null
motion stiffness in the direction of redundancy, which corresponds

to the remaining eigenvectors of the matrix H.

While the intended operation of this controller is in contact with en-
vironment there are situations where we operate out of contact with
it. It is therefore necessary to add damping effect and in the same
way the taskspace stiffness is specified, we introduce the individual
joint damping Koq € R'*" such as
Koa=o H diag(A, Ay, -+, Ag) HT | (31)

wliere a is a scalar scale coefficient and determines the strength of
damping. Therefore, the final form of the applicd torque’is given by
the expression

T=Ke(qo—q)+ Koo - )+ J| fos (32)

where g, and ¢ are the desired and current joint velocity, respec-
tively.

4 Experimental Verification

To examine the effectiveness of the proposed approach, several ex-
periments were performed using a planar three: dof redundant ma-
nipulator.

4.1 Outline of Experimental Setup

The manipulator was configured as a planar three link structure and
moved on the plane orthogonal to the gravity field as illustrated in
Fig. 2, whose leugth €, {, and 3 arc given by 106, 65, 65 nun
respectively.

Figure 2: Three-dof redundant manipulator

The three joints were remotely actuated via tendons, where six
torque controlled DC scrvo motors(rated torque 1.4Nm, torque con-
stant 2.1Nm/A, and rated speed 60 rpm including harmonic reduc-
tion gear of 50:1), were used to provide commanded tensions for the
tendons. The overall system architecture is illustrated in Fig. 3.
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Figure 3: Overall system architecture

Hardware was composed of two 68030 based single hoard comput-
ers( Motorola MC68030 CPU ) with floating point unit in a VMEbus
card cage, and SUN/SPARC workstation was used as a host com-
puter. It Lad a D/A converter with 16 channels and a A/D converter
with differential 16 channels to interface with sensors. Joint positions
were measurced by potentiometers directly attaclicd at the joints, and
joint torques were computed by measured tensions and the tension
and torque relationship of coupled tendon driven system[9]. The
controllers were implemented discretely, and control programs were
written by C langnage with a few 68030 asscwbly codes. They were
developed on a workstation in UNIX environment using a commer-
cial realtime software development tool of VRT Xvelocity{12). The
actuator level control and stiffuess control loop ran at 400Hz and
100Hz, respectively.



4.2 FExperiments

In the first experiment, the effect of ISOC was verified. We et the
tip of manipulator contacted with a single axis force sensor(Bongshin
load cell, 20kgf) and 2N bias force was given. In this situation, the
depth of contact was incrcased about 0.06m very slowly along con-
tact surface of the force sensor, expecting to exert the static contact
force corresponding to the displacement offset similar to Fig. 1. The
taskspace stiffuess was given by

K, = diag( 100, 100 ). (33)

To verify ISOC proposed in our stiffuess model, two control methiods
were applied: the one used the conventional control method, that is,
the joint stiffuess control without compensating ISOC, and the other
was the proposed one, which compensated ISOC. In the proposed
controller, the eigenvalue of null stiffness was set to be

Az =0.045. (34)
Thus, the joint stiffness became
K,=JVK,J,+ H diag(0, 0, 0.045) HT - A(g,, ). (35)
Also, we specified the damping matrix as
K4=0.2 H diag( M, Az, A3 ) HT, (36)
where Ay, Ay and A3 are the eigenvalues of joint stiffness matrix K.

Beforehand, we computed the minimnm eigenvalues of the effective
joint stiffness using Eq. (20) for the two control methods. As shown
in Fig. 4, the minimum eigenvalue of the conventional controller caine
to be less than zero. It weans that though the stable joint stiffness
was specified in the conventional control method, the effective joint
stiffness hecame negative definite due to ISOC and the configuration
of the manipulator was expected to be unstable.
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0.03 | \ I 4
Y ;
\ i

6.02 | \ / L

\ boundary of configuration instability ’/"
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Figure 4: Mininmin ecigenvalues of the effective joint stiffuess

It could be observed in Figs. 5, 6 and 7. which show the confignra-
tion of the manipulator during the experiments. Here, the desired
configuration represents that of minimum potential energy. To de-
termine the desired configuration of the manipulator, we introduced
the following performance function

H(@) = 3(a - )7 K,(g - 4,) (37)

Using the technigne proposed in {10}, we computed the desired joint
configuration of satisfying the constraints of end cffector position
and minimum potential encrgy. As illustrated in these figures, con-
ventional controller couldn’t preserve the configuration of the ma-
nipulator and its confignration was far from the desired oue. On the
contrary, the manipulator showed stable hehavior and also close to

the desired one during the experiments. The effect of ISOC could
be apparently perecived in the data of contact forces. The desired
contact force is going to be the summation of hias force and force
generated by stiffuess such as

Ja=K:(z -z )+ 1., (38)

where f, is the desired contact force. As given in Fig. 8, the exper-
imental results employing the conventional method could not track
the desired force trajectory and the proposed controller exerted the
desired static force successfnily shown in Fig. 9.

In the second experiment, the compliance behavior of the manip-
ulator was tested. The manipulator was driven aloug the planned
trajectory with given taskspace stiffness. Along the traveling path.
the manipulator was enforced to contact with the envirenment in-
tentionally and the contact force was measured. The force sensor
nsed in the first experiment, was placed in the taskspace paraliel to
the X-Y plane as shown in Fig. 10, and the nominal trajectory was
given as a cirenlar trajectory with 0.01 m radius and 0.1 Hz period,
low enough to neglect the inertial effect. Similar to the first experi-
ment, two control methods were applicd: the compensated controller
of ISOC and the other without compensating it. The taskspace stiff-
ness was given by

K, = diag( 400, 400 ). (39)

and the eigenvalue of null stiffness was set to be A3 = 0.045 and o
to determine the strength of damping was 0.2

The traveling paths of the end effector during the experiments are
illustrated in 12 and 11. It could be observed that as the deflection
gets larger the manipulator was hard to keep track of the nominal
trajectory. We noticed the similar fact in the plots of measured
contact forces given in Figs. 14 and 13. The conventional control
method showed poor tracking performance of force, and vice versa.

5 Conclusion

A compliance control method of redundant manipulators was pro-
posed. Through stiffuess modeling, we formulated the equations to
describe the relations between force and stiffness, where a new ter-
minology called induced stiffness obtained from configuration change
and force(ISOC) was introduced. ISOC can be considered as the re-
sultant effect of the static force expressed in terms of stiffuess. Tlhe
proposcd control method based on the developed model, provided
a feasible way of controlling stiffness of redundant manipulators.
Through the cxperiments, we confirmed the importance of 1SOC
and the effectiveness of the proposed control method.
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Fignre 9: Contact force of proposed controller

Figure 5: Desired configuration of manipulator

Figure 6: Configuration of manipulator by conventional controller

Figure 7. Configuration of manipulator hy proposed controller
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Figure 10: Schematic of experiment
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Figure 11: Contact motion trajectory of conventional control method
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Figure 12: Contact motion trajectory of proposed control method



