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Abstract

This paper presents an impact control algorithm for reducing
the potentially damaging effects by interation of redundant
manipulators with their environments. In the proposed con-
trol algorithm, the redundancy is resolved atl the torque level
by locally minimizing joint torque, subject to the operational
space dynamic formulation which maps the joint torque sct
into the operational forces. For a given pre-impact velocity
of the manipulator, the proposed approach is on generat-
ing joiut space trajectories throughtout the motion near the
contact which instantaneously minimize the impulsive force
which is a scalar function of manipulator’s configurations.
This is done by using the null space dynamics which docs
not alfect the motion of an end-effector. The comparative
cvaluation of the proposed algorithm with a local torque op-
timization algorithm without reducing impact is performed
by computer simulation. The simulation results illustrate the
ellectivencss of the algorithm in reducing both the effects of
impact and large torque requirements.

1 Introduction

Increasing altention has been paid to the issue of redun-
dancy in the literature concerning robot manipulators. The
research on the use of redundancy has been focused on the
optimal coordination of joint motion or torque trajectorics
based on the optimization of applicable performance criteria.
Several performance criteria have heen implemented includ-
g joint range availahilily {1}, singularity avoidance [2], local
kinetic energy minimization [3], and obstacle-avoidance [4].
However, little attention has been paied to the possibility
of using kinemalic redundancy to address the issue of how
hest to interact an environment while minimizing potentially
damaging collision and impact effects in contact tasks.

Notably, for the case of redundant manipulators, Walker
[5) has established a model for the instantancous (impulsive)
effects of impact and derived the impulsive force as a function
of manipulator’s configuration. A framework for the mini-
mization of the magnitude of impulsive forces has been im-
plemented by solving the (velocity level) inverse kinematics.
Specifically, he discussed how to specify the joint velocities
that can reduce the undesirable effects of the impact. But
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he ignored the fact that manipulators are actually controlled
by specifying joint torques or especially joint accclerations in
the model-based control.

In order to generate the command joint acceleration of re-
dundant manipulator, the dynamic resolution of redundancy
which incorporates manipulator dynamics should be taken

into account. A dramatic difficulty with using kincmatic re-
dundancy in the dynamic control of redundant manipulator
is the instability problem illustrated in {6]. This instabil-
ity means that the command joint acceleration to track a
long end-effector trajectory can result in Jarge joint velocities
which may require unrealistic torque requirements. Torque
stability, specifically keeping joint torques within torque bou-
nds, is nol a separate subtask such as singularity or obstacle
avoidance, but prerequisite to the trajectory tracking of an
end-effector. Tn a practical sense, any task and/or subtask of
a manipulator cannot be acconiplished when torque stability
is not guarantced. In this work, a new dynamic control algo-
rithm with torque stability for reducing the potentially dam-
aging eflects by interation of redundant manipulators with
their environments is proposed.

2 Resolution of Redundancy At The
Torque Level

For a n-link manipulator operating in m-dimensional space
where n > m, the forward kinematics is given by

x = f(8) oy

where @ is an m-dimensional operation space vector with @
being the vector of n-joint coordinates. Dillerentiation of
this relationship leads to the following expression

& =J(6)8 (2)

where J € R™*" is the manipulator Jacobian. Differen-
tiating Bq. (2) with respect to time, we have the forward
kinematics at the acceleration level as follows:

J(@)o=3-J(0)0. (3)

The joint space dynamic model of the manipulator can be
written in the form



M(8)0+ N6, 8)=r 1)

where 7 is an n-dimensional joint torque vector of the ma-
nipulator with M(0) and N(8, @) being its n X n symmet-
ric inertia matrix and an n-dimensional vector containing
terms such as Coriolis, centripetal, and gravity torques, re-
spectively.

The equation of motion of a system that is constrained
by a task-dependent operational space trajectory can be on-
tained by globally minimizing the constrained Lagrangian.
Using an m x 1 vector of Lagrange multipliers, X, the con-
strained Lagrangian, L, can be written as

L=T-U+AT(f(8)~x) (5)
where the kinetic energy of the system is given by

T = % A" M(0)6 (6)
with I/ being the potential energy due to the gravity forces
acting on the system.

The objective function, I, of the global minimization of
the constrained Lagrangian is given by

ty .
I= L(0, 0, \)dt )]
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where {; and {; are the initial and final time of an end-ellector
movement, respectively. Using the calculus of variations, the
necessary conditions for minimizing 1 result in (see ref. [7})

A= (IM1ITy (5;~ Jo+IMTNY. (8)
Interpreting A as the operational forces of the redundant
manipulator, F, yields

F=7Jr, (9)
where

T=UM N gM, (10)

Based upon Fq. (9), the local joint torque minimization
scheme can be addressed as follows:

1 -
Minimize 3 77 subject to F=7Jr.

The minimum-norm joint torque solution including the null
space component, in terms of the Moore-Penrosc generalized
inverse (or pseudoinverse), is directly obtained as

=T P+ (I -T"De (11)
where € is an n-dimensional arbitrary vector and

5+ . -

J'=MILIMTIT) (12)
with the squared-inertia weighted pseudoinverse, J:‘,, given
by

~ n —9 3T .

Jhe =M ITaM2ITY (13)

Tt is worth while noficing that the redundancy is resolved at
the torque level, rather than at the acceleration level.

The null space dynatnics can be expressed as
JTy =0, (14)

where 7y is the null space joint torque, which does not affect

the motion of the end-elleclor because the resulting opera-
tional force F is zero. Thus the second term of Eq. (11) is
just the null space joint torque. In the proposed algorithm,

the null space dynamics including the arbitrary vector, e, will
play an important role in reducing the undesirable effects of
the impact in order to guard the redundaut manipulator for
the contact for a given end-effector motion.

As suggested in [6], the (unweighted) psendoinverse, J ¥,
given by

Jt=aTagnht, (15)

can stabilizes {urther the global belavior of joint torques
rather than any weighted pseudoinverse. By using J* in-

stead of Jt

2> the Tesulting joint acceleration is obtained as

follows:

0 = JY(E-JO) - (I-JtD)M™'N
+ (I - JtYM e. (16)

This substitution does not aflect the null space dynamics,
which can be easily shown. In addition, J* gains an ad-
vantage over J;:, with respect to computational efficiency.
Therefore the substitution of J* for J:rﬂ can lead to an el-
fective and eflicient algorithm from the viewpoint of both
torque stability and modest computational load.

3 Robotic Impulsive Model In Contact
With Solid Surface

The dynamic equations of the manipulator contacting with
an environment is given in the form

M@0+ N(8,0) =+ JT(0)Fq (17)

where Fee denots the force/moment experienced at the end-
cffector.

An impact occurs when a robotic system contacts its en-
vironemt. It is assumed that the impact occurs in a small
period of At. During the infinitesimally short time interval
of impact, all velocitics and angular velocities remain finite,
and thus there is no change in positions or orientations of any
bodies in the system. In the light of this basic assumption,
one may integrate both sides of Eq. (17) in an infinitesimally
short time and have

. . ) to+At
M(0){8(to + A1) — B(10)} = J? (O)Ali’TO/ Fe d1.(18)

The imulsive force Fe created at the collision point by the
impact, denoted by

A tot-At
F = lim s dl
ee A:Tn /;ﬁ Feedt, (19)
is a finite quantity. Also, we denote (1o + Al) — é('()) to be
AQ. Then from Egs. (18) and (19) we have, al the instant
of collision,

A= M Ey,. (20)

Equation (20) expresses the relationship between the im-
pulsive {contact) force and the instantaneous joint velocity
increment corresponding to the induced end-effector veloc-
ity. Since the relationship (2) between joint and end-cflector



velocities still holds at the instant of collision, we may write
A =J0=JIM ' JT Fee. ' (21)
Solving for Fee in Eq. (21) and substituting into Liq. (20)
yields
A0 = MPITUM YUY T Az = T Az, (22)
which J} is defined by ‘

JE=mMIT M ITY L, (23)

For the model of instantaneous collision dynamics, if the
velocities of bodies 1 and 2 immediately before collision are
vy aud vy respectively, and the change in these velocitics
immediately following collision are Av, and Awv,, then we
have the following expression:

[(Ul + A’D]) - (’02 + A’DQ)]TTL = -—C(U] — vg)Tn ) (24)
where n is the normal vector to the plane of contact of the
two bodics and 0 < e < 1 is the cocflicient of restitution.

We specialize the impact dynawics model to the case of a
manipujator contacting a solid object, which does not move
(such as a wall or table). In this case, we have

vy, = &, Av)=Az,
vy, = ADQ:O.

Equation (24) becomes
(@+Ax) n=—ca'n. (25)

We also invoke the fact that the impulsive force is directed
along the direction of the normal to the common tangent
plane to the contact point, that is,

Fee = Fepm. (26)
Using Eqs. (21) and (26), we may solve for the (scalar) mag-
nitude of the impulsive contact force, i.e., fee, as (sce ref. [5])

P —(L+e)&Tn
T TIM T
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Here we will consider the case of & being fixed which is the
most likely situation from motion planning. Accordingly, Fre
becomes a function of the manipulator configuration 6.

In order to reduce the damaging eflects of the impact the
magnitude of Fee in Eq. (27) should be minimized. For an
environmental ‘wall’ with the normal to its tangent surface
being m and a given dcsired end-eflector velocity & at the mo-
ment of contact, this means that the denominator of Eq. (27),
which is a function of 8, should be maximized. Thus the de-
nominator of Eq. (27) can be nused as a performance function
to be optimized. Hereinafter it will be noted by 11(8), that
is,

Ho)y=n"JrM"1J"n. (28)

4 Proposal of Impact Control Algori-
thm

The proposed algorithm is based on the formulation of joint
acceleration given by q. (16). The first term of this cqua-

tion accounts for the minimization of the norm of joint accel-
cration, ||@]|. Mereinafier it is termed the “minimum-norm
acceleration,” denoted by 8y, For the accurate tracking of
the desired Cartesian trajectory zq4(-}, the usual error cor-
recting term I(, e + K e is added to &4 in place of . Here

A . .
e = xq — x is the tracking error, and K,, K, are m hy
m coustant velocity and position feedback gain matrices, re-
spectively. Then the minimum-norm acceleration is given

by
On=Jt (Ba+ K e+ Kpe—J8). (29)

Recalling Iq. (16), the resultant joint acceleration can be
decomposed into a combination of the least-squares solntion
of minimum-norm, i.e., é,n, plus homogencous solutions cre-
ated by the action of a projection operator (I — J*J) which
maps (~M~'N) and M~'e into the null space of the Ja-
cobian J. For convenience, these homogeneous solutions are
termed “the first homogencous acceleration” and “the second
homogencous acceleration,” denoted by

O = —-(I~JYI)M™'N (30)
0 = (I-JtH)M e, (31)

respectively. In particular, the first homogeueous accelera-
tion corresponds to the local minimization of joint torques
since it can be derived from the first term of Eq. (11),i.e., the
minimum-norm joint torque solution, by assuming ¢ = O,
and substituting J* for J;,. In addition, the second homo-
geneous acceleration corresponds to the null space dynamics
which is represented by the second term of Eq,. (11).

The rolec of reducing the undesirable effects of the impact
is assigned to the arbitrary vector € in the second homo-
geneous acceleration.  This is done by using the gradient
projection technique [1] as follows:

e =k VII(0) (32)

where & is a scalar constant and V() is the gradient
(n-dimensional column-vector) of the performance function
given by Eq. (28). Notice that « should be a positive constant
since [1(0) is maximized. Especially, the suitable sclection
of k in Eq. (32) is based on hardware limits on joint torques
as follows:

mir, > (MO + N)' (MO + N), (33)

where 7, is the vector denoting the hardware limit for the
joint torques. Equation (33) can be reduced to the second
order algebraic equation given by

Ak+2Bk+C <0 (34)
where
A = pTM%*p
I = PTMZ(bm + bhl) + PTMN
¢ = (ém + éhl )TM.Z(ém + élll) + 2(0m + éhl)
MN +|INJ?* - {1,

whercin
p=I-J*N)M~'VIi(09).

It can be pointed out that the terms A, B, and C are the
functions of @ and 8. Given the torque limit vector 7, the



joint position vector @, and the joint velocity vector (), the
values of the parameters can be determined. Thus one can-
didate for x will be

-3+ VBT - AC

L 35
0< k< A (35)

Thus the second homogeneons acceleration is obtained as
b =r(I~J*M™'VII(0). (36)

Now, the resulling command acceleration b,h incorporat-
ing the minimization of the impulsive contact forces (i.e., the
maximization of the performance function given by Eq. (28))
becomes

b,] = ém + éhl + éh') (37)

whete 6, 11, and By are given by Fqs. (29), (30), and
(36), respectively. However, this form of the command ac-
celeration is not appropriate for direct use in industrial ap-
plications due to the inherent instability problem. As a main

reason for the instability problem, the previous literature (see
refs. [6], {8]) reported Lhat homogeneous accelerations canse
homogeneous velocities to increase in performing the subtask
such as the local torque minimization, which in turn result
in physically unrealizable torques.

In the sense of torque stability, a trade-off among homo-
geneous accelerations is unavoidable. As a trade-off means,
an antomatic switching scheme is preferred. As a systematic
switching criterion, the stability condition proposed by Ma-
ciejewski 8] is adopted in the proposed algorithm, which is
given by

o - éh <0 (’58)

where @, and 0, represent a homogencous joint velocity and
a homogeneous joint acceleration vector, respectively. When
Eq. (38) does not hold, the homogeneous acccleration will in-
crease the magunitude of the homogencous joint velocity and
will subsequently increase torque requirements. This, in ef-
fect, amouats to a positive feedback system and results in
the instability problem. In [8], this condition was proposed
on purpose to identify regions of stability and instability for
a local torque optimization scheme offline. llowever, in the
proposed algorithm, the condition is incorporated in actively
avoiding the instabilily region of operation online. Espe-
cially, considering the homogeneous accelerations, O and
Oz, the two types of stability condition are used in the lol-
lowing form

0 0]\1 < (;())

6,02 < (49)
where ), is given by

o= —J%J)0. (1)

The actual value of 8 in Eq. (41) can be obtained from a
measuring device of a robolic system.

Now we are ready to specify the dynamic control al-
gorithm with torque stability for minimizing the impulsive
forces. The proposed approach is to add each homogencous
acceleration term to the minimum-norm acceleration accord-
ing to the realted stability condition as follows:

if { Oy 'bhl <0 and O By <0 ) then
.0(] = gm + ghl + th

else if ( 01, 0|,| <0 and 8,8y, >0) then
B4 = Om + 01y o

clse i( 01‘ 01,1 >0 and 6y -84, <0) then
04 = 0, + 612

else
.(l = 0,“ .

5 Numerical Simulation

Any dynamic control method of redundant manipulators for
minimizing Lhe impact eflects has not been presented as far
as we know. Thus, in order to explicitly illustrate its effec-
tiveness with respect to minimizing the potentially damag-
ing collision effects, the proposed algorithm is comparatively
evaluated with the algorithm given as follows:

if (()h : . < 0) then

éll =0, + 0y

else

bd = él“ .

The above algorithm proposed by Chung et al. [9] is the
stability-condition based dynamic control for local joint tor-
que optimization, which does not inclitde the subtask of re-
ducing the effects of impakct.

In this example, the simulated manipulator is a 3R pla-
nar manipulator without gravity. All links are modeled by a
thin uniform rod of a length of 1.0 m and a mass of 10 ke.
The desired end-effector trajectory, Z4(-), is a straight-line
Cartesian path, starting and ending with zero end-effector
velocily, and a constant bang-bang type of acceleration. To
demonstrate the issues discussed herein, we utilize a partic-
ular example of the collision of the redundant manipulator
with a solid surface, or wall. The contact dynamics-based
subtask of maximizing I1{8) given by Eq. (28) will guard
against damaging collision effects with an environmental wall
with the normal to its tangent surface being n = [-1 0]7.
The wall is located at = = | parallel to the y-direction, on
the way of the planned trajectory.

The command torque 7, which is adopted as a control
mpnt is obtained from Eq. (1) using the command accclera-
tion 0(| The joint control system is simulated with position
and velocity feedback gain matrix K, = diag(256,256,256)
and K, = diag(32,32,32), respectively. The arm starts from
0 = [180° —90° 0°]7 close to a kinematic singularity, with
accelerations 2g = [3 —2]7 m/s? and &g = [-3 2]T m/s? for
the first and the last half of the path, respectively. Besides,
the coeflicient of restitution is assumed to be e = 0.9 for the
collision between the end-effector and the wall.

Figure 1 (a) shows the arm motion generated hy the stabi-
lity-condition based dynatic control withoul reducing the ef-
fects of impact. At the instant of collision, the magnitude
of impulsive forces calculated using Eq. (27) is obtained as
135.95 N-m-s. As expected, the stable behavior of joint
torques is illustrated in Fig. 1 (b) where the peak torque is
bounded by about 210 N-n.

The next simulation was performed for the proposed al- -
gorithm along the planned trajectory. The constant # which
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Fig. 1. Simulation results for the stability-condition based
method without reducing the impact effects:
(a) arm motion; (b) torque profiles.

is requirced in gencrating b;,g was selected as 104 considering
the bound given by

0 <k <18112. (42)

This bound was obtained in Eq. (35) by substituting 8 =
[178° —-89° —1°]T,8=[0 0 07, and 7, = [10? 107 1097
N-m for an approximate initial movement. -As sliown in
Fig. 2 (), the contact configuration of the manipulator gen-
erated by the proposed algorithm illustrates that the third
link is less perpendicular to the wall when we compare this
figure with Fig. 1(a). In this case, the maguitude of impul-
sive forces is 63.95 N-ms, about a hall of Lthat of the first case,
that is, the stability-condition based method withont reduc-
ing the impact cffects. This agrees with our intuition, since
in the human arm case, we would expect Lo obtain less shocks
when colliding with obstacles with forearm more folded than
in a outstretched configuration. It is scen in Fig. 2(b) that
the proposed algorithm leads to a bigger value of the peak
torque when compared with the first case. But the peak
torque is bounded within about 320 N-mn, which is still in a
stable region of operation. The above observations leads us
to conclude that the proposed algorithm results in a better

400 n L 4 N "

0.6
Time(seconds)

®

Fig. 2. Simulation results for the proposed algorithm:
(a) arm motion; (b) torque profiles.

performance in the sense of reducing the impact clfects while
providing the stable behavior of joint torques.

6 Conclusion

In this paper, a new dynamic control algorithm with torque
stability for redundant manipulators was proposed to reduce
the potentially damaging effects of the impact encountered in
the interaction of the manipulators with their environments.
In the proposed algorithm, the redundancy was resolved at
the torque level by locally minimizing joint torques, subject
to the operational space dynamic forinulation which is the
unique functional relationship mapping the joint torque set
into the operational forces. The null space dynamics, i.e.,
the homogencous component of joint torques, which does
not alfect the motion of an end-eflector, was used to min-
imize the magnitude of the impulsive forces obtained from
the model of instantancous collision dynamics. The result-
ing command acceleration is composed of three terms: 1)
the minitnum-norm acceleration, 2) the first homogeneous
acceleration correponding to the local minimization of joint
torques, and 3) the second homogeneous acceleration corre-



sponding to the local minimization of the magnitude of the
impulsive forces. In the sense of torque stability, the pro-
posed algorithm adopted a switching technique as a trade-off
among the three homogencous accelerations by using the sta-
bility condition. The comparative cvaluation of the proposed
algorithm with the stability-condition based method without

reducing the impact effects demonstrated the effectiveness of
the proposed algorithm in the sense of the minimization of
the impulsive forces. In addition, the proposed algorithin
was shown to generate stable joint torques and agree with
the human arm case.

References

[1] A. Liégeois, “Automatic supervisory control of config-
uration and behavior of multibody mechanism,” IEEE
Trans. Systems, Man, and Cybernetics, vol. SMC-7,
no. 12, pp. 868-871, 1977.

2

T. Yoshikawa, “Analysis and control of robot manipu-
lators with redundancy,” Robolics Research: The First
International Symposium, M. Brady and R. Paul, lds.,
MIT Press, Cambridge, MA, 1984, pp. 735-747.

=

0. Khatib, “Dynamic control of snanipulators in opera-
tional space,” in Proc. of 6th IFToMM World Conf. on
Theory of Machines and Mechanisms ( New Delhi, In-
dia), 1983, pp. 15-20.

4]

5

(6

(7

(9]

A. A. Maciejewski and C. A. Klein, “Obstacle avoid-
ance for kinematically redundant manipulators in dy-
namically varying environments,” Int. J. Robolics Re-
search, vol. 4, no. 3, pp. 109-117, 1986.

I. D. Walker “The use ol kinematic redundancy in re-
ducing impact and contact eflects in manipulation,”
Proc. IEEE Int. Conf. on Robotics and Aulomation
(Cincinnati, Ol1), May 1990, pp. 434-439.

J. M. Hollerbach and K. C. Suh, “Redundancy reso-
lution of manipulators through torque optimization,”
ILELE J. Robotics and Aulomation, vol. RA-3, no. 4,
pp. 308-316, 1987.

H.-J. Kang and R. A. Freeman, “Null space damping
method [or local joint torgue optimization of redundant
manipulators,” J. of Robotic Systems, vol. 10, no. 2,
pp. 249-270, 1993.

A. A. Maciejewski, “Kinetic Limitations on the use of
redundancy in robotic manipulators,” IEEEF Trans. on
Robolics and Aulomalion, vol. 7, no. 2, pp. 205-210,
1991.

W. J. Chung, W. K. Chung and Y. Youm, “Dynamic
control algorithm of redundant manipulators based on
stability condition,” in Proc. of the ISCA Int. Conf. on
Computer Applications in Industry and Ingineering,
(Honoluly, IIT), Dec. 1993, pp. 7-11.



