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Abstract

In this paper, we discuss the modeling of flexible manip-
ulators. In the modeling of flexible manipulators, there
arc two approaclies: one is based on the distributed-
parameter modeling and the other on the lumped-
paranicter modeling. The former has been applied to
coutrol and analysis of simple maunipnlator requiring pre-
cision. while the latter has heen applied to mndti-link
spatial manipulator, becanse of the model’s simplicity.
We have already proposed the lumped-parameter mod-
cling method for a multi-link spatial flexible manipn-
lators. In this paper, we apply our lumped-parameter
maodeling mcthod for simple mauipidator, and investi-
gate that model of how nmeh degree of precision we can
get. The experiments and simulations are performed,
comparing these results, the approximate performance
of our modeling method is discussed.

1 Introduction

Becanse of the rapid development of industrial antoma-
tion, robot of high speed, lightweight and saving energy
are required.  Also, in the ficld of space applications,
these properties are demanded. The main problem with
lightsweight manipulators is the tip deflection and the
structural vibration due to the clasticity of arm's com-
pouent parts. The problems motivate the growing inter-
est in rescarch on fiexible manipnlators.

The rescarch on Hexible manipulators began about 1970
and since then, it has been a subject of a number of pub-
lications.  Among these publications, the modeling of
flexible manipulators has been one of the main theme of
rescarclh [1]~[3]. The opening research had mainly cen-
tralized upon the planar one-link or two-link flexible ma-
nipulators and had been applying distributed-parameter
modeling for those manipulators. The dynamic equation
of motion had been derived by using the partial differen-
tial equation [1]. However, due to the complexity, only
few attempts have heen made so far for the distributed-
parameter model of mnlti-link, multi-DOF spatial flexi-
ble manipulators [2]. Therefore, there has heen renewal
of iuterest in the lunped-parameter modeling in recent
vears [4]~[6].

[n some multi-link spatial flexible manipnlators, equa-
tions of motion depend upon arm’s configuration, and
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Fig. 1: A Lumped-mass and spring modei of fexible
manipulator.

thus, simple models are regqnired for real time compu-
tation. Lumped-parameter models are effective for such
purpose [4]{5]. On the contrary, in control of one or two
link planar flexible structure (e.g. solar paddle), since
cquations of motion change little depending upon strue-
ture’s configuration, precise models are more desirable
than sitple moclels.

Our aim is to develop a modeling method which is ap-
plicable for both purposes. We have already proposcd a
modeling method for multi-link spatial flexible manip-
ulators [5]. In this paper, we prove that our modeling
method can be applied to the model requiring precision.
The effectiveness of our modeling method is discussed by
comparing the natural frequencies and the amplitudes of
simulation results with those of experimental results,

2 A Lumped-Mass and Spring
Model

In this scction, our proposed modeling method [5] is
hriefly explained. The method assumes that the mass of
system is concentrated at chosen points, called stations,
whereas the segmeuts hetween two stations, called fields,
are massless and elastic in property.

The term station and field are originally nsed in Holzer's
modeling method [7].

Fig. 1 shows our proposed modcl of a flexible manipn-
lator [5]. where station is defined by mass m; and iner-
tin Iy (j = 1,2---,p), while field is defined by stiffuess

— 117 =



Station
or joint

Field k

With deflection

Station
or joint

S
Fig. 2: Forces, moments and deflections at the kth field.

b (k= 1,2-- q). Displacement of a station from it's
nominal position is given by elastic deflection vector sy
(Fig. 2). Generally, 84 38 a 6-dimensional vector that
represents the linear and angular deflection. The overall
clastic deflection vector e can be written in the following

form

; T
- O R |
e = [sl 8, 8, ]

en ] (1)

= [(,’[ €2

where m = 6q. Let f,, ny vespectively be the force and
monent of one side of the k-th field. The prime means
the other side. The relation between f,, nyp and 8, can
e expressed as

[ f‘;] = K1, (2)

T},

where K. is the stiflness matrix of k-th field. We ap-
ply the modeling method to a one-link planar flexible
manipulator in the next section.

3 Modeling of One-Link Flexi-
ble Manipulator

3.1 A Lumped-Mass
Model

and Spring

Fig. 3 shows a lmuped-mass and spring model of a oue-
link planar flexible manipulator. The coordinate system
of the flexible manipulator considered in this paper is
shown in Fig. 3. » — y coordinate frame is stationary
and &' — y coordinate frame rotates with the hml of
tanipulator. In this figure, # is b angle, &4 is elastic
deflection, and ¢y is elastic angular deflection. Herein,
s and e in Eq. (1) can be written as

s, = [(5;- (fu-}r,

e = [& & & & ). (3)
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Fig. 3: Lumped-mass and spring model of a one-link
flexible manipulator.

K in Eq. (2) can also be written as
= 01;5 L 4By | W
I 'k

where Bl and I are respectively stiffness and length

of field.

3.2 Equations of Motion

Ecuations of motion are derived by Lagrange’s method.
Let r;(f, e) be the position vector of j-th station. The
overall. kinematic energy T and potential energy U of
the manipulator can be respectively written as

1, . I B
T = -2- Z (Hi]’?‘} T; + Ij([)f) + 5[,,92’ (5)
J=1
1, 4 .
U = 56 Kaye — Z (m,-rj g) R (6)

j=1

where Kyy = diag(K,---K,) ., I, is the the rotor's
inertia of the actuator. We consider the manipulator's
motion in the horizontal plaune, thus the cffect of gravity
can be neglected. The Lagrangian L is

L=T-U
S TR TR S .
:Z (51711‘1‘} Tj + —é[](bf) + ;[ﬂ(}z _ §e7 1(226.(1)
i=1 “

Using Eq. (7), we obtain the equations of mntion as fol-

lows:
d (oL oL
- ﬁ?(%)‘m (8)
d (0L oL
0o = (]7(5;,_)”5;:‘ (9)

where 7 is joint torque. Transforming Eqs. (8) aund (9)
mnto matrix formn, we obtain

p

s

T _ | Mu(f.e) M 0,e)
0] | My0e) My(f,e)
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h’l(gq('),e,é) 0 0 0
* [hg(ﬂ,é,e,e) ] + [ 0 K”] [e],(m)

or in a compact forin

Mg+h+Kq=Lr (11)

(2] o li)

3.3 Modal Analysis

where

The equation which is related to the elastic motion can
he separated from Eq. (10). as

&+ M3 Kye = — My My,6 (12)

Let's consider the modal decomposition. The eigenval-
ues and eigenvectors of M, Koy are given by

M3 Ky®, =Q.¥, (r=12,--,m) (13)

The deflection vector e can be expressed by a linear com-
bination of the eigenvectors and the modal coordinates
as

m

e = Z ¥.er,
r=1
Ve (14)

where ¥ and e are respectively the modal matrix and
the modal coordinate, and are represeuted as

'

[, @ -, @],

.
e =[e g ] (15)

Il

4 Simulation and Experiment

In this section, the effectiveness of our modeling method
is discussed. For that purpose, applying our modeling
method, three kinds of hunped-mass and spring mod-
els of our experiiuental flexible manipulator are con-
structed. Based on these models, simtlations are per-
formed. These results, based on a precise model con-
structed by commercial dynamic analysis software pack-
ages, are compared with experimental results,

4.1 Experimental Setup

Fig. 4 shows an overview of onr experimentat flexible
manipulator (FLEBOT 0). The manipulator is com-
posed of one elastic link and one rotary joint. Rotary
joint is actuated by DC servo motor with hardware ve-
locity feedback. Joint velocity is measured by tachome-
ter. A shaft potentiometer is used as the sensor of hub
angle, while a laser heam and a PSD (Position Sensitive
Device) is used to measuer the tip deflection of the arm.
Table 1 lists the properites of FLEBOT 0.

Potentiometer
/ ‘Laser PSD

-

=y

Tip mass

- DC servo motor
________ — Tachogenerator

Fig. 4: Overview of the experimental flexible manipu-
lator FLEBOT 0.

Table 1: Properites of FLEBOT 0.

Parameter Notation | Value
Length of the link I [m] 0.50
Stiffuess of the link | ET [Nm?| 6.2034
Roter’s inertia I, [kgm?)-| 3.1458 x 1072
Reduction ratio G, 88

Mass of the link my [kg 0.37

Mass of the tip mg [kg] | 0.5744 or 0.8774

4.2 Control Scheme

FLEBOT 0 is eqnipped with the velocity servo motor
with hardware velocity feedback system. The joint mo-
tion is commanded by joint velocity command. Thus,
joint torque cannot be controlled directly. Here, we as-
sume the relationship between velocity command and
the produced torque as follows:

T = Gr]‘—sp(";rrf - I\'.wolm)v

= A(f. - 9), - (16)
where
G, is the gear reduction ratio,
K, is the voltage feedback gain,
I, is the voltage/velocity coefficent.
b = G,0 is the angular velocity of motor,

Vies is the voltage corresponding to
the velocity command,
(jr is the velocity command, and
A= G?I‘\},,[\',,,. is the velocity feedback gain.
We consider simple P-control for joint motion. Velocity
command 8, is computed by

b = —Fpu(6 — 0a), (17)
where Fy, is an appropriate gain. Voltage velocity com-
mand V. is computed by

Vier = Gr Kb, (18)

and nsed in the experimeunts. Eq. (17) can be rewritten
as:

6, ~[00F,,,0][Z:g':],

= —Fg (19)
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Fig. 5: Constructed models.

In order to simplify Egs. (10) aud (11) we make the
following assumptions:

o Firstly, we will only consider the slow motiou, and
thus, the centrifngal and Corioli's forees can he ne-
glected,

h(g.q)=0,

o Secoudly, we will assume that the influence of elas-
tic deflection e in the inertia matrix is small, and
thus,

M(f,e) ~ M(0).
Substituting Eq. (16) in Eq. (11), along with above as-
sumptions, we have
Mg+ LAL g+ Kq = LAS.. (20)

In this casc the desired states are

_ | P _| b .. |0
qti—[ed]—[o}, ’Id—qd—[o}v (21)

therefore, Eq. (20) can be transformed into the state-
space form as

g—a,| _ [ -M'LAL" -M™'K ]
a-q.| I 0
. - '
x [q_q”]+[M LA]H,, (22)
q—4qq 0

Eq- (22) can be cast into state eqnation form as follows:
&= Az + Bi,. (23)

In the simulations. the diserete-time state equation cor-
responding to Eq. (23) is used in the following form:

x(k + 1) = dx(k) + 'O (k), (24)

where b indicates the A-th interval of the sampliug pro-
cess, @ and I' ave the discrete matrices of A and B for
a zero-order holder (ZOTT).

4.3 A Precise Model

A precise model of FLEBOT 0 is constructed by
ADAMS™  ADAMS™ is a conunercial software pack-
age for dynamic analysis of mechanical systems pro-
duced hy Mechanical Dynamies, Incorporated. In this
sinnilator, a finite-element method based on Timesenko
heam theory is used as a modeling method of flexible
strneture. In order to obtain a precise model, the elastice
bean is divided into ten picees, here. We consider owr
experimental manipulator as having 10 beam clements.

-0.93120

'
]
'
)
+
[}
)
'
+
'
v
'

(a) Ist vibration mode (b)2nd vibration mode

Fig. 6: 2 stations vibration mode shapes.

(a) Ist vibration mode
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Fig. 7: 3 stations vibration mode shapes.

4.4 Models Based on Our Modeling
Method

Three kinds of models of FLEBOT 0 based on our mod-
cling method are constructed: a) one station model, b)
two station model, and ¢) three station model (Fig. 5).
Based on these models, simulations are performed on
MATLAB™ software package (The Math Works, Incor-
porated’s produet). Mode shapes of two station mocdel
and three station model can he obtained by computing
the modal matrix &, and drawn in Fig. 6 and Fig. 7.

4.5 Results and Discussion

The response resnlts for step input of desired angle are
computed by the two simnlators and experimented by
the flexible manipulator. Furthermore, hoth results for
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Table 2: Comparing frequencies of the simulation.

Hz] (my = 0.8774)

Type 1st moc (T?nd maode | 3rd mode
I station (MATLAB) | 1.7388
2 station (MATLAB) | 1.8682 27.536
Jstation (MATLAB) | 1.9073 28.745 84.260
ADANMIS 2.0265 . 29.692 89.708

Table 3: Computed natural fregnencies of 1st mode.

Type [Hz) (s = 0.574:0) | [Ha] (inp = 0.8774)
1 station 1.9983 1.7388
2 station 2.2023 1.8682
3 station 2.207 1.9073
ADAMS 2.4876 2.0267
Expriment 2.4938 2.0492

the one link flexible manipulator are used to verify onr
modeling method. In the experiment and simulation,
we set [y = 2(s7!) and the sampling time as 10 (ms).
For these sinmlations. V., of Eq. {16) is decided to be
approximated to the experimental results.

The vesults of simulations and experiments are shown in
Fig. 8 and 9. Fig. 8 and Fig. 9 respectively show the
responses of joint motion and elastic deflection at the
tip. Natwral frequencies of one station model, two sta-
tion model aud three station model are compnted from
the eigenvalues of A in Eq. (23). Computed natural fre-
quencies of our madels and the precise models analyzed
on ADAMS™ software arc preseuted in Table 3. Natu-
ral frequencies of the 1st vibration mode computed from
cach model are comparcd with the experimental results
and presented in Table 2

Fig. 8, Fig. 9 and Table 3 point out that in case of
the tip mass being larger than the link mass, our mod-
eling method is proper for only a few muuber of stations
and ficlds, but in contrast, in case of the tip mass be-
ing smaller than the ink mass, onr modeling method is
proper ouly for a considerable nnmber of stations and
fields. Therefore, dividing the flexible manipulator into
a snitable munber of stations and fields is needed for onr
modeling method to be very effective. Snitable number
of stations aud ficlds is decided by the charater of ma-
nipulator, the controller and the requisite precision. For
example, in case of flexible manipulators with quite high

flexibility, its model needs a considerably large mumber -

of stations and ficlds to obtain a precise model.

5 Conclusions

One-link planar flexible mantpulator has been modeled
by using a huuped-parameter modeling method.  Ex-
primental results show that the system responses are

in good agreement with simtation results. Investigat-
ing these results, it can be concluded that our model-
ing method is effrctive not only to construct a simple
model for multi-link flexible manipulators, but also to
construct a precise model for onc-link flexible manipu-
lators, space flexible structures and so on.

Future work in this area will find a fornmla which can
decide a suitable numnber of stations and ficlds for flexi-
ble manipulators.
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