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Abstract

Presented are closed—-form expressions of the steady-state
solution for the three-state exponentially correlated
acceleration(ECA) target-tracking filter. The steady-state
solution is derived based on Vaughan's approach for the case
that the measurements of target position and velocity are
available at discrete points in time. The solution for the ECA
filter using only position measurements is obtained as a
special case of the presented results.

1. Introduction

A realistic model for a maneuvering target has been
proposed by Singer (1]. The Singer model assumes that that
continuous time target motion may be represented with
exponentially correlated acceleration(ECA). The discrete-time
state equation of the target motion is simple, and it leads to
a three-state Kalman filter solution for estimation and
prediction of the target states.

The steady-state solution for the ECA filter has been
extensively studied [2]-[5], [7], which provides a priori
tracking performances and useful information for preliminary
design.  Fitzgerald presented the solution very efficiently
with a careful parametrization for the case of using only
position measurements in [2], and for the case of using
position and velocity measurements in (3]. The steady-state
solutions were generated by allowing the filters to run until
the steady-stale was reached. A closed-form solution for
the ECA filter was obtained by Gupta [4], when only
position measurements were available. The result is a
generalization of the previous work of Gupta and Ahn (5],
which is based on Vaughan's approach [6]. More recently,
Beuzit (7] presented an alternative approach to obtain the
closed-form solution based on the comparison between the

Wiener and Kalman filtering.

On the other hand, Ramachandra (8] gave a closed-form

solution for a constant-accelaration(CA) tracking filter with
position measurements only, The tracking filter is derived
under the assumption that the changes in the target
acceleration, between two consecutive measurements, are a
white noise process. The work is extended in (9] to the
case that the position and velocity measurements are
available.

In this paper we present closed-form expressions of the
steady-state solution for the ECA tracking filter using the
measurements of position and velocity. The steady-state
solution is detived based on the Vaughan’'s results. The
result of [4] is obtained as a special case of the presented
expressions.

II. Equations of ECA Tracking Filter

The discrete-time model of ECA target motion is
described by following equation:
x(k+1)=@ (Tx(k)+v(k) o8]

where the dynamic state transtion matrix @ (7) is given by

1 10 ‘I:Zal
01 1(1-x)
00 x

o(T= (2)

with 8= —L-

T x=exp(-8) and a1=8-1+x.

Obviously,
1 -1 -1%

01 t(l-y)
0 0 y

oY= 3

where y=exp(8), az=8+1-y. In eq.(1}) wv(k) represents a
stationary zero-mean white sequence with nonnegative
definite covariance matrix @ given by

qu q12 g3
qa qz qz
g3 gz gn

Q=F [v(kw(k)T]= . @

The exact expression for Q is given in [1].

The position and velocity measurement, available every

T second, are defined by
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y(k)=Hx{(k)+w(k) . )

where
1090
#=[5 7 o]
010
and w(k) is a stationary zero-mean white sequence with
positive  definite  covariance  matrix R given by

diag! o}, 0§}. It is assumed that w(k) is uncorrelated

with v(k).

M. Steady-state Solution for ECA Tracking
Filter

1
For the ECA. tracking filter, (®,H) and (®,Q %) are

detectable and stabilizable, respectively. Thus, the steady-state
prediction covariance mutrix, denoted by P, exists and it is
obtained by solving the discrete-time matrix Riccati equation
P=01P-PHT(HPHT+R)HP10 7+ Q. (6
Moreover, the steady-state Kalman gain K and the
estimation covariance matﬁx, denoted by f’, are obtained,

respectively, by computing

K=PHT(HPHT+R)! n
and
P=(1-KH)P(1-KH)T+KRK". (8)

The Vaughan's approach [6] to .obtain the covariance
matrix P is briefly outlined as follows.

1. Construct the Hamiltonian matrix of the Riccati eq.(6)

such that
1—1=[ o7 0o H'R'H
oo T o+Qo HR'H |

2. Find the eigenvalues of H;, \i{Hy), satisfying
INVCHDI>, i=1, 2, 3.

3. Find the eigenvector matrix W such that
wD=HW
with

ADO

D=| l, A=diag { M, Az 23 ).

oA

4. The steady-state covariance matrix P is then given by
P=Wawi!

where W1, Wa are partitioned matrices of W such that

W =

[Wu Wiz

Wa Wz

Now, we describe the derivation of the covariance matrix P

in detail. First, the Hamiltonian matrix is given by

1 o o 2 0 0
aJj
-19 1
B ——
T 1 0 p Uf 0
2
2 B -1°az 1!1—2!
Hy=| Ve W=y oy 7 o2 0 (9)
Ui S1 yqu 1+ Uzl 18+—Szl %
ay . [+£1
U:  S:  ygm ———f}? 1+ 2% 1(1-x)
U S
Us S:  yaw — -2 x
4% 02

where

Ui=gi~10g12-t%a:q13
Uz=qiz- 189z~ t%a:q2

Us=qu3- Wgn-17aqs

Si1=qz+t(1-y)qu
S2=qz+1(l-y)an
Si=gn+t(l-y)gn.

The characteristic equation of the Hamiltonian is

obtained by the determinent

{Hy - MI=0 (10
and the eigenvectors are obtained by solving for x in

(Hr - M)x=0, (1D

By direct evaluation of eq.(10) we can determine the

characteristic polynomial as

FO =2 S+ ma e A+ A B+ ah+ 1=0 (12)
where
a=-4-2 cosh- —2k- - %

[ 5} as
b=7+8cosh8+ _1_4?1_+ —/—172—+ —'237

a1 as 01032

c=-8-12coshB+ —%1—+ £Zr+ —lg%'

0] 03 gijos

and

A1=2(1+coshB)U1-10U2-1%a Us +18S1+1avgs
A2=2(1+cosh0)Sz2-1(1-x)S3-t(1-y)ygn

Ax=U1S2-UsS)
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By= -2(1+2cosh8)U1+16(1+2cosh8)U>
+1% (2+3)a1-0(1-x)1U3-18(1+2 cosh8)S:
+179%8,+1%8a2153+1°[68(1-y) - (2+x)a2lyqs

+‘caﬂazyqz;+’t4alawq:n

Bz= -2(1+2cosh8)Sz+1(1-x) (2+y)S3
+2(2+x)(1-y)ygn-t2(1-xX1-y)yqz

B3= -2cosh8(U1Sz- UaS1)+1({1-x)(U1S3-UsSy)
+1%a1(U3sS2- U2S3)-t{1asSz+(1-y) Uzlyqus
+1[1a:S1+(1-y) Uilygas.

Let us define Xi=hithi', i=1, 2, 3,

so that

XitvV Xi-4
2

hi= niI> 1.

Factorizing the eigenvalue equation (12) such that
=A== -A2H(-R3)(M-23D) =0 (13)
where L, Az and\3 are the eigenvalues outside the unit

circle. Comparing (12) and (13) we get, after simplification,
X1+ X2+ X3=a

XiX2+ X2X3+ X3X1=0 (14)
X1X2X3=7

where

Y=-c+Za.

From (14) we can obtain

X1,2=—é‘[(d—X3)t (a-X3)°-4X3'7 ] (15)
and a cubic equation for X3,

X3-ax3+pX3-1=0. (16)

The solutions of eq.(16) are obtained using the procedure
detailed in [5]. Since the ECA model is of order 3, H; is of
.order 6. If ) is an eigenvalue of Hj, then 2! is also an
eigenvalue of H;, and hence the eigenvalue problem is of
third-order only.

The eigenvector W; corresponding to the

eigenvalues 4, are obtained by direct calculation as

1
wa
we e |ws (an
w4
wsi
we
where
Ni
wz = Di
o ey hiltaz-(1-y)(10+ Il\),: N
wa=(hi- 1o}

wa= (28h- (1~ 1) )03

1
x—h;

Ni S
we= ['U3)~-‘-53—“I_)l 'wz.'}’Q:B““Toa wsil
3

i
and
Di= —0127 Dy (1-9) [ (1-x)g13-Ta1gx]

+(y-MT1-x)S1-t2a1S2))
~(1-A(y-RILE(1 08+ 1)

gy (1- bt )]
a2

Ni= —oly[-x(1-x><y~x.»>[u1+(x.-—1>(1—X.-+—f,’zl‘-)u%1
2
+ 1l Ua(y~A)A]
--alg-tayka[(l-x)qm-‘tallJm Naz-8(1-y]

-19(Y‘)~i))-i[1(1-x)(19+—‘:%')-1201(1-1#%)]

The steady-state P matrix is now given by

P=WaWil (18)
where Wi and W2 are determined by the eigenvectors as
1 1 1

wa waz Wwa
w3 w2 w

Wu =

(19

Wye W Wa
Wsy Wsz2 Ws3
We1 Wez We3

The elements of the W1 and Wz are obtained by putting

i=1, 2, 3 in eq.(17). Inverting Wi we obtain the expression
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a an apz an
Wu" = |az az an (20)
as ax az
where

1. . N2 M N3 _ M
an-= (T (@z-(1- y)e)( Ds y )\3 Da y')vz)

NyN3 Az
l)ZDS ‘t(l—y)( Y")\- - y_xz )]
A3
an=73 - y“la)
)~3 N3 Xz
-t(1-y)( Dy y-rs D3 y-% )]

-1 _DaN3-NzDs
4=y T DyDs

A )3
azx=%[ Tz(az-(l—y)e)(—&y—lﬁ~%ﬁ
N1N; A
- D\Ds (1 _V)( y— kl y_xa )]

)

=L 5
an= D[ }")»1)
Ns _ds N M
-t(1-y)( Dy y-% Dy y-h )]
-1 _DiN1-NaD,
an= " DiDj3

1 2 N1 As _&—)‘-1——

an= D[ (az-(1- y)e)( y Ay D2 Y‘)'l)
NN, M

-~ BE -y (5 Mo vl

L L2
an= D [ Y=z )
_L Ne M2
-H1l-y) (5 v T Ds y-a )i
__1 _DiN3-NiDy
4%="p DD,
and
= ¥g,—(1- ﬂ__%
D= e 1=yl 5~ T
LAV Az—My
Dz (y~A3Xy-\y)
D3 Mi-)g ]
N3 (y-M)y-h2)
e NN, Az—My
A5, TRy
L DNalV3 A3=he
D2D3  (y-M)(y-h2)
N1N3 IS

DiDs )y )

The steady-state covariance P=W2uWil then yields

3
= 2 p—
Py Olg;(k. Daa
3
P12=01§()»1—1)af2
)3
P13=01Z;()~.-~1)a,3 21
Pyp= 072(19)», (1- K) ]a.z
Pry=03 2:(<0h- (1-1) -l Ja

Ni S

Pgy= ,i;—x_—lIT[_ Uaki-S3 'ﬁ:“wiiiyq&?_ —07:‘11)5.' Jaia

In the above, we derived equation eq(21) for the
steady-state prediction covariance matrix. Then, the
steady-state Kalman gain K and the estimation covariance
matrix P are determined as indicated in egs.(7) and (8). Also,
the steady-state smoothing covariance matrix [10, 11], denoted
by Ps, can be obtained by solving a set of linear equations
P~APAT=P-APA". (22)
where
A=Po7pP,
The procedures to compute K, P, and Ps are straighforward,
and it is not detailed here.

Figs. 1,

2, and 3 present the results for the parametrization of

We computed P using the derived expressions.

(—) 100056 +3.4(—2— "T )08y 2, where 0, denotes the

standard deviation of the exponentially correlated target
acceleration. The same figures have been presented in [3]. The

solution was inaccurate for 0,7/0;<0.01 and 6,7%06,>10. The
inaccuracy is due to the sensitivity of the solution of eq.(16),
which depends on the parameters a, B, and 7.

IV. Discussion

In this paper we presented closed-forrn expressions of
the steady-state solution for the ECA tracking filter using
the measurements of position and velocity. Though it was
not stated here, we could show that the expressions reduce
to the result of [4] as 02 = ®, It is also expected that the

results .of [8, 9] are obtained as special cases of the

presented expressions, which is currently under investigation.
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Fig. 1. Normalized rms position prediction errors.

p2=100

p2=10

RMS VEL ERR"T / SIGMA{2)

aL

-t

10° 10 10
TSIGMA(2) / SIGMA(1)

1

1 10"

Fig. 2. Normalized rms velocity prediction errors.
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Fig. 3. Normalized rms acceleration prediction errors.
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