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Abstract:

In this paper the comparison between the neural
networks and traditional approaches as system
identification method are considered, Two  model
structrues of neuarl networks are the state space model
and the input output model neural networks. The
traditional methods are the AutoRegressive eXogeneous
Input model and the Nonlinear AutoRegressive eXogeneous
Input model. The examples considered do not represent any
physical system, no a priori knowledge concerning their
structure has been used in the identification process.
Testing inputs for comparison are the sinusoidal, ramp
and the noise ramp.
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1. Introduction

Traditional and the neural network approaches to
nonlinear system identification will be considered in
this paper. In this paper case studies are presented
comparing conventional and Dbiologically motivated
(Artificial Neural Network based) model structures and
parameter estimation algorithms,

Indeed, an attempt has been made to present an
objective treatment by using traditional model structures
and parameter estimation algorithms which are popular and
widely available in commercial software packages, while
not considering approaches requiring significant effort
to code and considerable problem-specific tuning. Review
of the literature reveals the existence and availability
of popular traditional model structures for linear system
identification{1], whereas algorithms for traditional
nonlinear input-output model structures are not easily
available [2].

There have been very few reported studies on the use
of nonlinear system identification approaches for
improving the relative accuracy of traditional 1inear
model structures, hence this has not yet resulted in the
wide acceptance of any one particular approach. On the
other hand, it is believed that ANN based model
structures offer quite a general framework  for
identifying nonlinear systems with very few tuning
parameters [3].

In testing the various approaches in this paper, the

focus has been on dynamic systems with structurally
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unknpown nonlinearities. Thus, even though the examples
considered do not represent any physical system, no a
priori knowledge concerning their structure has been used

in the identification process.

2. Traditional Approaches Considered

Three traditional model structures the Auto-Regressive
model (ARX) and the Nonlinear
ARX(NARX) are considered. These are the model structures

with eXogeneous Input

chosen for comparison with the biologically inspired
model structures presented in the later sections. This,
however, must not be considered an exhaustive study. Our
aim has been to present a comparison with what appear to
be the most prominent traditional model structures,
without fine-tuning them for specific applications. We
define as traditional mode! structures parameterization
which have not borrowed ideas from developments in the
neurobiological disciplines.

In the traditional nonlinear system identification
literature, results for two major problem categories have
been reported: (1) structure identification of nonlinear
dynamic systems, and (2) parameter estimation of an
assumed nonlinear structure, Results for structure
identification of nonlinear systems are scarce but for
the reported simple cases they appear to be encouraging.
In a recent survey paper on structure identification of
nonlinear systems, encouraging results on the structure
detection of systems with linear dynamics and nonlinear
output functions have been presented[4]. The major
difficulty with the reported approaches has been the
large number of possible model structure combinations,
and the lack of a systematic procedure to effectively
narrow-down the available alternatives, Even though a
number of recent results have been reported for the
second problem category, the somewhat complex nature of
the parameter estimation algorithms for nonlinear model
structures have limited their acceptance. There does not
yet appear to be a widely accepted nonlinear structure
and an associated parameter estimation algorithm as is
the case, for example, with the Auto-Regressive Moving
Average(ARMA) representation and the linear least squares
estimation, Furthermore, the commercially available
system identification software packages do not yet
include options for nonlinear structures and, as
witnessed from this study, any attempt to code such
algorithms appears to require significant effort and
computational resources., Therefore in this work the

— 134 —



algorithus available in the MATLAB™ Systenm
Identification Toplbox have been utilized for comparing

the traditional linear system identification structures,
Comparisons with the traditional nonlinear system
identification structures was accomplished via software
implementation of the cited algonthms [5].

2.1 Auto-Regressive with eXogenous Input
(ARX) Model Structure

One of the simplest input-output model structures
selected belongs to the class of black-box models,
resulting from the assumption that the function f( + ) in
equation (1) is a linear combination of past
observations, that is an AutoRegressive with eXogeneous
input (ARX) model of equation (2).

y(k) = fylk-Dy(k-2), - - - ylk-ny), )
ulk-1)ulk-2), - + « ,u(k-nu}+e(k).

YR +Awlk-1)+ « » « +Agylk-ng)= (2)
Buulk-1)+ « « » +Buulk-ns)+e(k)

The input-cutput delay 7k, present in an ARX
structure and determined by trial and error at the mwodel

structure selection stage, can be chosen to best fit the
data. The ARX model structure is one of the most widely
used model structures in the system identification

communijty. Once the parameters ng np and g are
chosen, then the coefficient of the ARX model can be

determined using, for example, the least squares
estimation algorithm. This is accomplished by soiving an
overdetermined set of linear equations [l]. For

simplicity, the ARX model structures used in this study

will be denoted by ( na, np, ni).

2.2 Polynomial Nonlinear Auto-Regressive
with eXogenous Input (NARX) Model Structure
Each output component of the MIMO NARX model structure

depicted by equation (3) can also be represented by
equation (4).

vik) = Ayv(k-1), « yvk-n)ulk-1), - ,ulk-ny] (3)
+e(k).
yitk) = 8+ X%, 50 Yaxatoxn () - - -

P B0 k0 W)
+ei(k), .

v ,m

x1(k)

13

yilk=1xz = yi(k=2), * « * X mxn,(k)
_Vm<k_ny). (5)

Xmxno (k) = ur(k=1), » « » xal K) = ulk-ny).

To complete a NARX wmodel, the parameters, 9,-,-,
nultiplying the monomials in the expansion (5) must be
estimated, It should be noted that even though the

utilized model structure is nonl inear the

parameterization is linear in the parameters, The

forward-regression orthogonal parameter estimation
algorithm, a least-squares estimator with a model
struct\.u‘e selection criterion, reported by Billings et
al[6]. has been used to identify models with NARX
structure, As indicated by Billings et al. the same
algorithm with some modifications can be used to identify
NARMAX structures, However, for consistency with the
biologically inspired model structures only NARX
structures have been considered in this paper. Further

details on the reasons for implementing a structure

selection criterion in addition to parameter estimation

can be found in a number of papers by Billings et al.

(51, [61.

3 Neural Networks Approaches Considered
3.1 Feedforward Multilayer Perceptron
Model Structure

One of the model structures that has been motivated by
the resurgence of ANNs is that of an Feedforward
Multilayer Perceptron(FMLP) with or without teacher
forcing. In this model structure, past observations are
used for the teacher forcing FMLP (TFFMLP), and past
estimates are used for the recurrent FMLP (RFMLP), in the

approximation of function f( ) in equation (6).

yitk) = fivlk=1),+ « - y(k~ny),ulk)ulk-1), - - *(8)
ulk-ny))+eik),

It is assumed that the input and the output layers
have linear discriminatory functions and no biases, The
inputs to the first layer, i.e. the inputs to the
network, can be defined by the vector (7). Considering
the special structure of the input and output layers, and
in view of equation (8), the input-output equations for a
single hidden layer network can be expressed by equations
(9) and (10). equation (9) and (10) can be combined in
the compact form (11), which is in the form of a NARX
model structure,

k) = Iylk=1), + < ylk-n)ulk)ulk-1), - -, M
ulk-n))"
N{-1)
xualkn = Fm( i}:( U)(l—l./’lll,ﬂx(l-l,fl(k)'b[l,il)~ (8)
N(1)
xalk) = Fm(’gw u.n][z,ilx“.nl(k)+b[z,ﬂ) (9)
NE)
O ) =xpalk)= }i;w s malk) (10)

yilk) =  fiy(k-1), - - ,y(k—ny),u(k),ulk-1), -
ulk-ny))+eik),

(1)
The same argument can be extended to a network with

multiple hidden layers, and therefore a TFFMLP and an

RFMLP network can be considered as a NARX model structure
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of the form depicted by equation (11). This ANN is used
as a nonlinear, in put-output black-box model structure,

3.2 Recurrent Multilayer Perceptron Model
Structure

This model is based on the Recurrent Multilayer
Perceptron(RMLP) which has been reported by Chong{7]. The
RMLP model structure allows for feedforward links among
the nodes of neighboring layers, and recurrent and
cross-talk links within the hidden layers which carry
time delayed signals. If additionally the observations
are provided to the input layer, the model structure
becomes a teacher forcing RMLP (TFRMLP) model, otherwise
if the estimates are fed back then it is a globally
recurrent RMLP (GRRMLP) model structure, The nodes of the
GRRMLP and TFRMLP network are both governed by the
equations (12) and (13).

N
zualk)= ,in w nauaxaa(k-1)

(12)
NU-1
* 4 wonuax e b
xualk) = Fulzuil(k), (13)

The input and output layers have linear discriminatory
functions and no biases, no recurrency, and no
cross-talk. The inputs to the first layer of the GRRMLP
and TFRMLP are defined by the following vectors:

x k) = [m(k—l),uz(k—l/)\, - - Lunnlk-1), (14)
Vilk=1), « + «, Yimo e=-DIT,

x (k) = lur(k-1Duz(k-1), - -« ,uv(k-1), (15)
yilk=1), - » = ynmle-117

respectively.

For a single hidden layer GRRMLP and TFRMLP, the
input-output equations can be expressed as equations (16)
and (17). Equations (16) and (17) again can be rewritten
compactly as equations (18) and (19). Equations (18) and
(19) however, are in the state-space form of equations
(20) and (21), though the state vector x(k) defined in
equation (22)

consists of artificial states,

characterizing this empirical state-space model

structure,

N(2)
xwalk) = F[zl( Zi;w 22X (2l (k= 1)

? (16)
N
+ i W [1,p)2.7X [l,pl(k)"‘bw.ﬂ).
Pl
N
xpalk) = gw zA3,iX 2.4 0k) (17)
x(k) = glx(k-1)xi(k)) (18)

g(x(k-1),u(k-1))

n

yilk) = xpalk)+eilk)

Whax(k) +ei(k)
hi(x(k),ei (k)), (19)

x(k+1) = fkx(k)u(k),w(k)8), (20)
ylk) = hikx(k)u(k),v(k)8), (21)
x(k) =[xz (k) = x iz (1T (22)

The same arguments can be extended to a network with
sultiple hidden layers, and therefore, a GRRMLP and a
TFRMLP network can be considered as an empirical
state-space model structure of the form depicted by
equations (20) and (21).

4 Case Studies

The example presented in this paper is for
demonstrating the system identification capabilities of
sevrral conventional and  neural networks  model
structures, In identifying models for these systenms,
however, an attempt has been made to use only information
that would be available when investigating a complex
nonlinear system., Therefore, in this study no information
about the system order and the nature or severity of the
nonlinearities being identified has been explicitly used
in choosing the structure and size of the neural network
or of the conventional model structure.

There are some additional general comments which can
be offered, applicable to all of the examples presented
in this study. The relative MSE have been calculated
using the following equation:

Mean-Squared Error
Target Mean-Squared Deviation

NP 2
Zi(x(m(k) - yilk))
NP p
24tk - yi)?

MSE(e:) =
(23)

When selecting the data set, it is important to
consider the relative mix of steady state versus
transient response.

As an example the following SISO system is identified:

y(k) = 08y(k-1) + u’(k) (24)

The data set consists of the following signals: a number
of steady-state samples with the input and output at 0,
10 steps starting from 0, with magnitudes 0.1, 0.2, 0.3,
0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, respectively, 10 ramps
of slopes 0.01, 0.02, 0.06, 0.125, 0.175, 0.2, 0,225,
0.25, 0.3, 0.45, respectively, starting from 0 and ending
at 1, and 10 ramps with slopes -0.01, -0.02, -0, 06,
-0.125, -0.t75, " -0.2, ~-0.225, -0.3, -0.375, -0.5,
respectively, starting from 1 and ending at 0, Each of
the step and ramp signals in the training set contains 20
samples, for a training set total of 620 samples,

Three tests are performed with signals unknown during
identification, for

investigating the predictive

performanée of the model. The first test signal was of
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. 12
the following sinusoidal form: 0.6 + 0.3 sin( _/16—)

The second test signal consisted of a sequence of ramps.,
as shown in Figure (6). Additionally, white Gaussian
noise with zero mean and 0.1 standard deviation was
superimposed on the same sequence of ramps and used as a
test signal,

Since the analytical model is a NARX model structure,
the parameter estimation algorithm for ARX is used to
obtain a model with the System Identification Toolbox
available on the commercial package MATILAB ™ The
first step towards modeling the system is obtaining a

specific model structure, i.e, the number of past inputs

and outputs to be used. The subroutines called ARXSTRUC-

and SELSTRUC are available in the System Identification
Toolbox for this purpose. So the selected model
structures contained 5 past outputs, 6 past inputs

including a feedforward term i.e. rns=5, np=6, nig=0,
and 3 past outputs, 2 past inputs with no feedforward

term, i.e. nNg=3, np=2, Nl The first model
structure is denoted ARX(5,6,0) and the second model
structure is denoted ARX(3,2,1) in this study, Parameters
are estimated iteratively using subroutine ARX in the
System Identification Toolbox, for both ARX(5,6,0)
ARX(3,2,1). The obtained ARX(3,2,1) model is as follows:

y(k)= 183ly(k-1) - 1.1706v(k-2) + 0.312y(k-3) (25)
- 02077ulk-1) + 0.3022u(k-2).

With the identified models, three tests are performed for
investigating the ARX predictive performance, The
responses of the ARX(3,2,1) and the analytical model for
all the three test signals are shown in Figure 1. The
relative MSEs for ARX(3,2,1) model are 0,499, 0,434,
0.449 for sine, ramp and noise ramp inputs, respectively.
Also parameters are estimated iteratively using
subroutine the ARX, for ARX(5,6,0), until the parameters

converged and the obtained model is as follows:

y(k)= 19106y(k-1) - 1.1820y(k-2) + 0.2424y(k-3)
+ 0.0745y(k-4) - 0.0590y(k-5) + 0.9908u(k)

- 1.1552uk-1) + 0.3757u(k-2) (26)
- 0.0433u(k-3) - 0.1015u(k~4)
- 0.0098u(k~-5)

The responses of the ARX(5,6,0) and the analytica! model
for all the three signals are also shown in Figure 2, The
relative MSEs computed for the ARX(5,6,0) model are
0.818, 0.435, 0.451 for sinusoid, ramp and noisy ramp
inputs, respectively,

The third order NARX model with two past inputs and
outputs has 56 terms involved at the beginning of the
iterations, However, because this example is also a third
order NARX, the exact model can be identified. Hence
repeating relative MSEs is not be very meaningful in this
case, So a second order NARX structure with four delays

is assumed, and the following model is identified:

y(k) = 0.80218737y(k-1) + 093263932u%(k) (27)

The responses of the second order NARX and the analytical
mode! to all the test signals are shown in Figure 3,
The relative MSEs for the NARX are also tabulated in
Table 1,

The RMLP used in this example consists of an input
Jayer with 1 node, 2 hidden layers with 5 and 3 nodes,
respectively, and an output fayer with 1 node. The
1-5-3-1 RMLP network which has 66 connection links was
trained for 3800 cycles, where one cycle (iteration)
consists of one presentation of the whole data set, using
0.005 learning rate for the weights and 0.001 for the
biases, The responses of the RMLP network and of the
analytical model are shown in Figure 4, The relative MSEs
for the RMLP, also shown in Table 1.

The TFFMLP which has three past outputs and two past
inputs, with no jeedforward term, and it is denoted by
TFFMLP(3,2,1). The TFFMLP(3,2,1) conmsists of an input
layer with 6 nodes, 2 hidden layers with 6 and 4 nodes,
respectively, and an output layer with 1 node. The
6-6-4-1 TFFPMLP(3,2,1) network has 69 connection links.
The architecture was chosen based on other model
parameters, such as the order, the delays and the number
of the urnknown parameters of the ARX(5,6,0). ARX(3,2,1)
and RMLP. The TFFMLP(3,2,1) was trained for 45000 cycles
using varied learning rates varying from 0,01 to 0.00125,
for the weights and the biases. The responses of the
TFFMLP(3,2,1) network and of the analytical model for the
test signals are shown in Figure 5. The relative MSEs for
the TFFMLP(3,2,1) also shown in Table 1. A TFFMLP(5,6,0)
network with 5 past past outputs, 6 past inputs, and a
feed-forward term is also used. The TFFMLP(5,6,0)
consists of an input layer with 11 nodes, 2 hidden layers
with 3 and 7 nodes, respectively, and an output layer
with 1 node. The 11-3-7-1 TFFMLP(5,6,0) network has 75
connection links, and it was trained for 45000 cycles
using varied learning rates varying from 0.01 to 0.00125
for the weights and for the biases, which is same as in
the case of the TFFMLP(3,2,1) network, The responses of
the TFFMLP(5,6,0) network and the analytical model for
three test signals are shown in Figure 6. The relative
MSEs for the TFFMLP(5,6,0) are also shown in Table 1,

5. Discussion
Traditional and biologically inspired model structures

are compared for their effectiveness to identify
nonlinear systems. The ARX, the NARX are the conventional
model structures used in the comparisons. The FMLP and
the RMLP with and without teacher forcing are the
biologically motivated nonlinear model structures, For
the jdentification of an ARX wmodel structure the System
Identification Toolbox has been used which is available
in the comwercial software package MATLAB™.
However, an algorithm for estimating the parameters of
the NARX model structure has been programmed and used for

this comparison, Comparisons of the chosen model
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structures is accomplished through a number of examples.
The responses of the identified models are obtained for
three different test signals unknown during the
identification process. Relative mean squared errors are
calculated for the numerical comparison. For a sake of a
fare comparison, the parameters such as the orders, the
number of delays, the number of connection links, and the
number of iterations are carefully chosen for all model
structures. '

From the deterministic numerical simulations, it is
possible to postulate that the NARX, the RMLP and the
FMLP models are good candidate structures for nonlinear
system identification. However, the FMLP model structures
is not as effective as the RMLP and the NARX models,
Further works will be done for more complicate systems
like MIMO and even for stochastic environments. Thus we
can further compare the NARX and the RMLP structures in a
better way.
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Table 1, Relative Mean-Squared-Errors.

Model Sinusoidal | Ramp Noise Ramp

Structure| Input Input | Input
ARX(3,2,1) _ |0.499E+00 0. 434E+00 /0. 449E+00
ARX(5,6,0) |0.BIBE+0D - 10.435E+00/0.451E:00
NARX 1,249E-02 " |3.308E-03 5. 023E-03
RMLP " 11,995E-03 3. 255E-03 |1, 160E-02

1. 656E-02 {0. 161E+00
1.938E-03 |2. 134E-02

TFFMLP(3,2,1) |5. 116E-03
[TFFMLP(5, 6, 0) 6. 847E-04
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