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Abstract-"The presence of joint elasticity or the arm flexibil-
ity canses low damped oscillatory position error atong a desived
trajectary. We utilize a stochastic model for deseribing the Fast
dynatnics and the approxiination error. A second order shaping
liler is synthesized such that its spectram matches that of the
fast dyunmics. Augmenting the state vector of slow part witlh
that of shaping filter, we obtain a nonlinear dynamies to which a
Ganssian white noise is injected. This modeling approach leads
ns Lo the design of an extended Kahuan lilter(IKEF) and a lin-
car quadratic Ganssian (LQG) control scheme. We present the
simulation resnlts of this control method. The simulation results
show us that onr Kalman filtering approach is oue of prospective

methods in controlling the flexible arms.

1. Introduction

Recently several advanced control algorithms for the
flexible joint wanipnlalors bave been proposed. Marino and
Nicosia [6] reformulaled the dynamic model of an elastic
joint as a singularly perturbed nonlinear system, where the
“slow” variables are the joint posilion and velocity and the
“fast” variables are the joint forces and their time deriva-
tives. A method based on the concept of integral manifold
was suggested by Nhorasaui et al. [3], [4] aud Spong el al.
16).

But, recent works have shown that the control algo-
rithims based on a rigid model are limited in their applica-
bility to real robols because Lhe eflcct of joint clasticity is
not, so small enough to be neglected. The small anguiar de-
viation due to the joint compliance will produce a significant
ervor in the end-effector position through the amplification
ellect of the link. As can be seen from [1], the flexible modes
will nol be damped out as far as the fast subsystem contains
poles on the imaginary axis of the complex planc. Indeed
the flexible arn under consideration exhibits low damped os-
cillatory poles, non-miniiniim phase behavior, time varying
dynamies due to inertia changes and nonlincar characteris-
tics due to the [riction.

To find aslow control is related to finding aintegral snb-
wanifold, thus it involves solviug a set of partial differential
aquations. Tn obtaining the slow control we utilize the ap-
proximation method{G], therehy it leaves an approximation
error. Purther, the fast dynamics is coupled with slow dy-
namic variables and very sensitive to parameter uncertaiuty
and/or varialion.

In such a situation, a statistical approach may vield a
acood solution. We describe the fast dynamics as a stochas-

tic model. Since the fast dynamics generates a low damped

ascillalory Lern along o mean trajectory, we describe it by
i second order shaping filter deiven by a white Gaussian
noise. Obviously, the poles of shaping hilter locale on the
imaginary axis atrd its oscillalion frequency is buned Lo that
of arm vibration.  Also Lhen variance of white noise is se-
Iocted so that e spectrum of its output is best suited for
that of the real oscillatory motion, Augmenting the shale
of the rigid arm dynamics with thal of the stochastic model
vield a noulinear stochastic system. That necessitates the
nse ol the BKEF and LQG control. Another feature of this

control sclieme is that it deconple and linearizos the highly
coupled dynamics of aseries flexible arm based on the state
estimate. Parther, with this controf law, we can include the
ellects of the meassurament noise, thus it helps us to make a
more realistics solution. Finally we will show through cowm-
prter simulation results that our conbrol schenre ontperforms
Lhe existing control schemes especially in the presence of pa-
ridneter mismalch,
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Fig. 1. 7' joint of an n—link manipnlator with joint flexibility

IL. The Singularly Perturbed Model

We are considering an n-link robot wmanipulator that
has n clastic revolnte joints. But we assume that the links
are rigid. The jih clastic revolule joint is depicted in Lig-
ure L. To describe the joint elasl
ables

cily, we use the two vari-
#j and f;. llere, ¢b; denotes the joint angle at the jth
actuator side and #; the joint angle at the (54 1)th link side.

The dynamic equations for this system are given by
TV + Bi(6,0)0 + Gy(8) = K (b - 0) (H
I+ Db = K(0 = ¢) 470, (2)

where Ji(8) € R™*", I?,((),())() e R™, Gi(f) € ™ represent,
the inertial matrix, the Coriolis’s force plus the centrifugal
force, and the gravity vector, respectively. The matrix A =
diag{ky, -+, k,} is the stiffuess matrix of the flexible joints.
Jows Upy € ™™ are the inertial and the friction madtrices,
respeclively, and 7, is the torque veclor generaled al the
motor sides. Nole that J,,, B, are diagonal. The torque to
the links is delivered through the elastic force given by

Y= K- 0). 6)
Noting that J;is invertible, we cay rewrite (1) as
0= ~J7" B0 = J7 G+ a7, (4

The elasticity matrix £is delined by 1 = diag{e,, - - L fn) =
K= Substitnting ¢ = 84 N ~"1p = 6+ £ in (2), we ohlain
Lhat

O P A VA bl [ 22

FOITE R D 0 TG I e (5)
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For I£ = 0 one nn find a submanifold which is chnmc(.or-
ied by = (J7 + I U B = I B+ TG+
I, i Lhu Jn-«lnm‘nsmna,l space. Il each commponent
¢; > 0 of E s sulliciently small, there exisls an invari-
ant submanifold :1/)‘,(0,(.),1',,,,1’)) in a neighborhood of
i =45(8,0, 7, 0)[2].

Thesystem (4),(5) represent a singularly perturbed sys-
Lene where the slow variables are the joint angle # and the
{ast variables are the elastic force 4. The full order model
{(1),(5) represent a highly complex nonlincar system that, in
general, is difficult to handle for the design of a controller.

ly general ¥ can he expressed as
= ahg 4 by, (6)

where g represents the Lransient behavior of %, i.e., it
5 the deviation of 1 from the integral manifold o =
Pl 0,0, Y. We approxinate the invatant manifold up
to first order as [ollows:

Wy = o + By + O(E?), (7)

where gy is the zeroth order approximation of 4, and JOR7
represents the first order correction Lo ¥,. The control in-
putl 7, can be decomposed into two parts:

Tm = Ts 4 Ty, (8)

where 1, and 7, are called Lhe slow control and the fast
conlrol, respectively. We let

T = To0 + E7g + O(E?), (9)

where 1y is called the redneed order slow control and 7, is
the first order approximation of Lhe corrective control wlich
will be used for compensating the eifects of 4y, Substituting
(6),(8) for 4h, 7, in (5) respectively, we can decompose (5)
such that

Epy = =07 4 5 e — 5 B
FUT B =B TG+ IS (1)
ity = U Ly = SR B By 5 (1)

In order to oblain slow coutrol, we further substitute (7),(9)
for i, 7 in (10), respectively. Then equating tle terms of
the same powers of £, we oblain

=7 A I e (T B = S B )0+ I G I e
(12)

\

B = = (07 4 05 By = 17 B B + I Fr . (13)

Sinee Jo, . By ore diagonal, it follows that £, = J,,.F and
B, = Byt Thas, we obiain from (12), (13) that

o = G )T B~ I B0+ IO+ 05 )
(14)
tar = (D BTV E 4 DT (10 = dudbn = Butba), . (15)

where 1 € ™" is Lhe identity matrix. It can be scen rom
{143, (15) that the rigid control 74 is related 1o 4y, and T4,
to .

Applying (6).(7),(14),(15) to (1), we obtain
0= F(0,0) + G0y + 17 EU0) (7t = Joutfor — Bowihag)

7y O (16)

FO.0) = —J7 " Bl = J7 G I a0y

PFl Ll WY IR AP A
H m i J

SO O U i

HOY= (S = I B+ 1)

In (16), O(E?) is cansed by the error between the invariant
manilold 4, and its first order approximation, g 4 g .

We denote by 9,1,(;,,,('54 the desired path and its deriva-
tives, and assuine that # is further differentiable.  Choose
matrices L,, 1, € R™* sneh that the rools of def(s*1 +
Lys 4 Lp) = 0 lie in the open left hall plane of {'. Now we
choose the slow control such that

To = =GO (PR, 0) = fa+ L(6—0)+ L (H-04)) . (I7)

Then, defining the Lrajectory crror by € = 8 — 4, we obtain
the error dynamics such that

é 4 Lvé+ Lpe = J7 EH(B) (7o = Buathao = Jm¥sn)
Iy + O(E?). (18)

In order to let the trajectory error vanish, the corrective
control, 1Py needs to be chosen such that 7, = Dyt +
I lf’vn In obtaining 1[,‘,, 1/;.“), we must use the chain rule:

: UL D s 0 '/’sn Diso
0= 24y ol 1t
Peo 2 78 + ?—T Py 6+ ,Z; It Ts0 (19)
. 0'/ 0 g S, NP LA
Yo = ——f - — S F ).
SRS TR A M7 AP St Dl
(20)

But instead of the exact values, we use, following the method
in {6], their approximation 1['.‘0, "/A’.eo whiclh are obtained by
neglecling the terms containing F in (19), (20). Hence if we
choose

Ts1 = B"”/;.s() + '11'112'50 (21)
along with (L7), the system (18) yields
4 Lad Loe=J7 Wy + OB, (22)

The error dynamics (22) has the form in which the stable
linear dynamics is perturbed by the fast dynamics %, and
the terms of higher order in E than one.

TIT. A Statistical Approach to the Fast Dynamic Model

Lven after applying the slow control 7, = 14 + Firg
with the use of (17) and (21), the error system (22) is under
the subject to the perturbation cansed by the fast dvnamics,
/,—I thy and the Wigh order error term, O(E?) in £. We lot
£ = .7,"1/,vf + O(E*). The presence of such a perturbalion,
£, canses the flexible arms to exhibit low damped oscillatory
wmode when ¢; grows. That is, it yields an oscillatory error
along a desired trajectory, 0.

It s alimost impossible to deseribe the exact dynam-
ics of £, since it involves solving a set of partial diflerential
eqnations to obtain exactly the submanifold of the stow dy-
nanics. Correspondingly, it is not easy to find a (ast coutrol
7y based on it which suppresses Lthe oscillatory error. Aside
from the modeling, the parameter uncertainty is another
great problem.
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A fast dynamic model representing the devialion of the
flexible joint dynamics Trom the rigid dynamics will be de-
rived based on the response of Lhie manipnlator in frequency
domain. It would be desirable to be able to gencrate em-
pirical antocorrelation or power spectral density dala, and

then Lo develop a mathematical model that would produce
an ontpal with duplicate characteristics. Since the pertur-

-5 0
frra (17

bation causes a low damped oscillatory error, we model & Fig. 3. Power spechrum(a) of a single link nanipufator with
clastic joint and the power spectrum(b) of its model i
wlhich fast dynamies is replaced by a stochastic model.
The shaping filler paramelers were tunned to match.

by an outpul of a second order system with an accelera-
tion mput which has a white Gaussian noise characteristics.

Fig. 2.

Thal is, we use the sccond order shaping filter approach for
modeling of the unavailable quantiy, & e,

£ Ayl 4+ Ayl = W(I) + Bry, (23)
where Ay = dicg{20wn i, -+, 20wan }, Ay = diog{wdy, -
w;‘:\v”}, Wy = diag oy (0), -, i (D} B = diag{b,---, b}
Heve, (1) is o zero-mean white (Ganssian noise process
with Elwi(Dwi(t+ 7)) = qid(7), where 6(-) denotes the delta
function. Generally, a second order model provides a good
model of an oscillatory random phenomena, such as vibra-

tion, bendine

g, and fuel slosh in acrospace vehicles[5].

Welet o, = 0, 0, = (), te =& vy = é, and define an
angrmiented vector 2 € R™ by = = [7, «], 27, 2117, Then,
we obtain from (16), (23) thas

€Th 0 1] 0
i= |7 (""”":3) el ("'(E;:"') Ts0 + : + 3 T
Agwg + Ay 0 W) I3
0
A ""0” Tl = Joihso — Do) (24)
0
y=[1000]x+V(),. (25)

where V(1) is also Ganssian white noise process which rep-
resents the measnrement noise such that B[V(OVT(r)] =
R&(L — 1) with R positive definite.

In order to validate the above model, we have to ciioose
properly the cocflicients of the shaping filter and the statis-
tics of white noises. The oscillalion frequency wpy; and Lhe
covariance ¢; > 0 of w; are determined by experimentally.
Figure 2 shows an example of the power spectrum of a floxi-
ble arm in which oue can estimate the frequency of the side
band thal is caused by joint fexibility. The damping co-
efficients ¢;’s and bi's of the shaping filter are obtained in
such o way that the power spectrum of the system (1),(2)
matches that of (24) for a given slow control 7,. Figure 3
shows the power spectrum of a flexible arm and the power
spectrim ol the system (24),(25) alter tunning the shaping
filter paramelers, respectively.
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Power speckrmm of asingle Jink manipulator with elastic
Joint under hammer tmpact.

(e =0.01).

IV. A Construction of a Fast Controller Based on EKF

In order to construct a fast controller for the stochastic
maodel (24),(25) we need Lo eslimake the state, and the ax-
tended Kalman [iter is best swited for obtaining the stale
estimates of such a nounlinear system. Siuce the construe-
tor of BRI s rather routine, we omit the equabions for
KT here.

e fast control, 77 needs 1o be chosen so that the op-

ror «, = € is minimized. Based on the state estimate; & we

choose the fast control inpul such that 7p = Kuiy + K,
where [, [, € R™™ ™. Applying the separation principle,
one can obtain K, I, by solving the algebraic Riccati equa-
tion for a subsystem of 2., z4. In any case, the foedback gain
Ky, ] must be chosen such that £ damps oal with a reason-
able speed. Tleuce, it follows from (17),(21) that the total
control law hecomes

T = =G e ) (F (g w) — B+ Lplwy = 04) + Lo(z — 64))

+ E(“m"/‘,sll + ',m 7]’50) + ](1r§'4l + ]\'7,.’;70. (2(’)

V. A Simulation Study:
a Single Link Manipulator with Joint Flexibility

The dynamics of the single link are depicted in Fignre 1
is given by

g = n,,(), + 11 sinf 4 aq

¢ 1/) = n,,‘() + g sin @ + age I/Y +ag + azt,

where ¢ = k(d — 0) = (p — ('))/(, a = -—3]}1/17112, I
—fiilr//‘Zl, (y = ;S/ml!, 4 :_.’H},/'m,l2 - I?m/Jms a; =
=B/ Ty a6 = ag=1/ 10, ay = /.. Utilizing (14),(15),

we ohlain

il

—1 : .
P50 = ag (—MH — agsinf - ay r‘«,)

Vo = (1 -'5'1771/7”/12 ) : (7',vl = do '/7"_4; - '/'.m)

Thew with the stoehastic model for the fast dynamies we
obtain

0= oo+ oy sin 4 foToo + € — ety (7 — Tt — Bruthsg)

. ) .
= —wn& — 2wnE+w A+ bry,

. S . —_ —~1 -

where o = @y — aqe g, oy = oy g Yag, and Bo =

—ayay h Letting # = [0y 2y oy ay) = (06§ 1" we

obtain

&= f(e) gl ran )+ he(D)

y=cluot (),

— 154 —



. 0 v ey
I‘I‘ Batio— . ) l\‘ 1
/= oLy + opsingg 4wy L g = | (o= B o) » 0s 08
) *a N 0 0.6 0.6
—WREy —~ 20WNTY ()T/ o : 04
o, - 0.2 0.2
h=00o0 ", and e=[1000]". . )
We constrnet an an extended Kahnan filter for it and choose RN A‘\ (‘I - TR P B0 0
me (nee] titne {arc]
a feedback such that i !
(rl‘) (h)
T = Tan + €751 + T = —(—pzy — asinz — b, Fig. 5. A real trajectory and the desired one with the full com-
m 50 5 / 3 2 g ¢ ) !
Pa posite controller(a) aud with the stochastic model based
. R = R B controller(b).
ol = 0u) Loy = 00) + c(Bunthog + Jinthyg) + kodig + kepiy . [ )
rad] 1.2 ¥ T T T T 1.2 T T T T T T
The desired trajectory is defined by the {ollowing fitth ! e
order equation: o8
0.6
Balt) = 040 + d 1'(")5 1r-(">llpm<">3 o
() =O0p+d {6 —) -1 —] - — , 0.2
( [ im [ AAﬂAAI\AA
! e
. . . . —0.2 L L X n -
where 840 is Lhe desired initial position, o denotes the dis- T4 RCIRCIRY
placement in position, and £, is the expected duration of the (2) ()
displacement. In our example, we let ¢; = 1.2, a3 = —-41.9), ' ‘
ay = 0033, a4 = 0.825, a5 = —0.375, ag = —3.583, and Fig. 6. A real trajectory and the desired one with the full com-
N 0 ‘é" o I I posite controller(a) with the stochastic model bhased
a; = 0.25.

controller(b) when ¢ = 0.015 is assumed, while the true

We compared the performances of our control method valie is € = (.02.

with the existing two flexible arin control methods: The first
one is the Spong et al.’s method[6] that utilizes just the slow

control, 7, = 7,5 + eryy which is the summation of the rigid V1. References
conlrol and the the corrective term. The second one is the (1] R. A. Al-Ashoor, R. V. patel, and K. Khorasani, “Ro-
method of Al-Ashoor et al.[1], namely, full composite control bust Adaptive Controlier Design and Stability Analysis
that utilizes the fast control based on the state estimates of for Tlexible-Joint, Manipulators,” TERE Tyans. Syst.,
. . . o . Man, Cybern., vol. 23, 10. 2, pp. 5RI-6G02, March 1093,
the Tast variables along with the slow control. The third B N . ,
i stochasti - " {2] I K. Khalil, Nonlinear Systems, Macmillan, New York,
one is our stochastic model based control schenye, Fignre 4 1999

shows the real angnlar position trajectory that fails Lo follow

{3] K. Khorasani and M. W. Spong, “Feedback lineariza-
the desired one in the case of ¢ = 0.01 when only the slow

Lion of a flexible manipulator near its rigid body mani-

controlis applied. Figures 5 slhiows the real trajectory and lold,” Syst. Contr. Leit., vol. 6, pp. 1R7-192, 1985,

the desired one under Lhe same condition with the Tul) com- 1] K. Khorasani and M. W. Spong, “Invariant manifolds
posite controller{slow plus fast control) and the stochastic and their ap ;I‘i“'f'-“”“-"' to “_',0!’?" nm‘nipnla‘l,nr with flexi-
model based conbrollor respectively, but in botlh cases they ble joints,” Proc. 1985 IEEE nt. Conf. Robotics Au-

fomat., St. Lonis, MO, 1985,

[5] P.A. Maybeck, Stochastic Models,  Estimation, and
Contral, Vol. 1, Acadomic Press, New York, 1979,
hased control method in the case where there is a mismatch [6] M. W. Spong, K. Khorasani and P. V. Kokotovic, “An
in o, respectively. In both cases, we assumed € = 0.0 15, while Integral Manifold Al’l’f‘?“‘"'", to the Peedback Control of
the true value is € = .02, In this example, one can see that L(I,‘,“;'{],‘Ulf",:g sz’o]l:;:[q’zf)llg({()r: Alugl:gtboll‘glﬂ? Automat.,

our coulrol schame is more robust than the Al-Ashoor et ’
al’s method.
[ 1.2

are not distinguished. Tigures 6 shows the performances of
the full composite control method and the stocliastic model
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Fig. 4. A real :’l.”gfll]-’l.l‘ position trajectory thal fails Lo [ollow -

the desired ane when only the slow control is applied
(c=0.01).
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