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Abstract

In this paper, we consider an optimal control problem
of a nonlinear stochastic system. Dynamic programming
approach is employed for the formulation of a stochastic
optimal control problem. As an optimality condition,
dynamic programming equation so called the Bellman
equation is obtained, which seldom yields an analytical
solution, even very difficult to solve numerically. We
obtain the numerical solution of the Bellman equation using
an algorithm based on the finite difference approximation
and the contraction mapping method. Optimal controls are
constructed through the solution process of the Bellman
equation. We also construct a test case in order to

investigate the actual performance of the algorithm.

1. Introduction

The method of dynamic programming developed by
Richard Bellman was originated especially from the
sequential stochastic

programming  problems, say

inventory control [5,11]. This method can be considered as

a powerful method in the sense that it provides necessary
and sufficient conditions for optimality [4], and it falls well
outside the domain of Linear Quadratic Gaussian control
method [12].

Computational solution of the optimality condition, i.c.
Bellman equation, obtained by the method of dynamic
programming is very difficult to solve because of the
complexity and the dimensionality. Therefore developing

efficient computer-implementable algorithm for  this

equation has been a significant problem so far. In this paper
we are going to consider finite time horizon control
problem. For this case we have to solve the Bellman
equation of parabolic type which is a nonlinear parabolic
partial differential equation. So far there has not been much
works on the computationl solution of the finite time
horizon problem as far as the dynamic programming is
concerned. An algorithm based on finite difference
approximation and contraction mapping method is used for
the computational solution. Test case is also constructed
for validating the performance of algorithm. Finally in oder
to illustrate how the method of dynamic programming is
used for the control of nonlinear system, simple attitude

control problem of a satellite is considered.

2. Optimality Condition

The Bellman equation also known as the dynamic
programming equation arises in the general classes of
stochastic control problems such as optimal stopping,
regulation and tracking. We consider the following
stochastic dynamic system which can be sufficiently general

to include nonlinear and time varying parameters.
AL (5) = 1! s, () ds 4 32 0%, (5.7, (), (9) 1
=t

i=12....n

where

V) = x = Xy e, W, is a standard Wiener process,
and ,* (s5) represents the solution of (1) at time 5 evolved

from (¢, x) with control 4.
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Equation (1) is called the It5 stochastic differential
equation if ' and o satisfy the so called Its conditions

[8,9,10]. We take a pretty general form of a Bolza type
cost functional with finite time horizon, which can be

employed for the problem of regulation or tracking.

Jit, e u)=

K,
+HrD (T expl-f ¢ (g (@) dol (T < )

)

ming Ty 1)

S s s exp{=[ e (owrs” (a))dodds

where

E,, conditional expectation for {1 x}

¢ : stopping time or exit time from the domain

U = {u, u.1,....} - et of all possible control actions
u(s)=wu, )

" : discount factor

The stochastic control problem with finite time horizon by
the method of dynamic programming involves a parabolic
nonlinear partial differential equation as its optimality
condition. It is called the Bellman equation or the dynamic

programming equation.

Let

v(t,x)=inf J(t,x.u). (3)

Now applying the dynamic programming approach [5,8]
and Itg's lemma [8,9,10] to (1),(2),(3) yield the following
Bellman equation [3,8,12 ].

The parabolic Beilman equation :

max{ (? +l"(1 xv(x)=- L0} = 4)

wel/

for (£,x)e(0,7)xQ
v(t,x)=0for (£,x) e(0,7)x X2
v(0,x)=¢(x) for x eQ

¢ : backward in time

L(t,x) =

]
—EZZLC’:‘:(’ X)U‘;.A (, x)

il gtk

¢ —Zm «, x)—-+(‘ (t,x)
J

3. Algorithm for the Bellman equation

Finite difference discretization in both space and time for
the Bellman equation yields the foliowing equation [3].

Vie = Vi

N
1 m
+max (X Dy, - fi)=0
well g

where
k=1.2,..n
i=12,.. N

In the above discrete Bellman equation, matrix p, is

obtained by applying the finite difference approximation to
the operator /"[3,12]. Modifying the discrete Bellman
equation to the form of a fixed point iteration yields

Vik =("');’,1 . (5)
where

Vie = 0o
M . N -
(), ='J:”“Z" waVia +I,MA S
T

I LI
y={ Lear,
0 il i=j
1
- S l‘ i=
o= i
) Ly,
0 if iz
Zu i
/;Ak - .k
—+dy,

Since we are going to use 2-D case in the test case and the
application of the algorithm, we consider the operator /"y
of the following form. '

L'v(e, x, x,):
EY n (©)

—(a") -2ah)~———~(a ") +h" R A

111 oxl IZ l(}x n : \
where

1 2
ay ==Y auoy, bl=-nm

2i5 7
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4. Construction of A Test Case

Although an algorithm is verified mathematically, it is

essential to do validation through the numerical
implementation. This is because the actual performance of
an algorithm might be different what we expected in term

of mathematical reasoning,

In this section, we construct a mathematical example which
can solve the Bellman equation exactly [12]. Thus,
comparing the numerical solutions with the exact solutions,
the performance of the algorithm can be examined

rigorously.

By considering the boundary and initial conditions of the
Bellman equation, we assume the following is the exact

solution.
v(1,x, %, ) = exp(YOd(x,, X, ) + Asin()E(x,,x,) (N
where

3%, %) = 5 (x, - @)Xy (5, —b)

Ex,.x,) = {x, (x, - @)} {x, (x, - 0))

Let the domain q of this test case be a rectangle (fig. 1). Then,

Q={(x,,x,): 0<x, <a, 0<x, <b}.
Refer the end of this section for parameters », 1,3.b a.f.

Then y(¢,x,,x,) satisfies the boundary and initial conditions

[ERe]

of the following Bellman equation.

max{ﬂg—'x"—m-+ L, o W (,x,0x) - [ (L x) =0 (8)

wel/

for (£,x,.x;)€(0,T)x2

vt,x,,x,)=0for (t,x,,x,) €(0,7)x X2
v(0,x,,x,) = ¢(x,,x,) for (x,.x,) e

122 zg"o" Fa LI
— " o - —+c
SRR e aap i Rrahl

L)

L'(t,x,,x,) =~

We still have to define o, and m’ for the numerical solution.

For this, the following is obtained from the satellite dynamics [7].

0 0
% :[0 S, (sinx, + ,x. )] ’
O 1 lleta
) 5 %)
m' =
b =sinx, +1Sin(2x,) - 7px, +u

Refer the end of this section for parameters 4, 5,. 1.

In order to avoid the degeneracy of the problem, we take
the operator ['(s.x,.x,) in the following form. ¢

guarantees uniform parabolicity of the operator 1*(1,x,,x,)
and subsequently uniqueness of solution [8].
4 é

+b b ——+c"

L'(t,x,,x,) = e (ay + &) ‘
L (1,%,,%,) = —(a £)—— - i
( b (@ & 2 zﬂff (E(l d’l

(10)

where

| I
Y= (d"), b =—m'
a; 2( W) ;=
Since v(1,x, %) and I*(1,x,,x,) can be obtained from (7)

and {10} respectively, every term in the Bellman
equation(8) except r*(1,x,,x,) is known. Thus if we
choose f*(1,x,,x,) SO as to satisfy the equation (8),

v(t,x,,x,) becomes the exact solution of the Bellman

equation. Let ,~ be the optimal control and take only two

values.
u el ={u,i,}
Assume
w=u for 0<x, <, andu’ =u, for [ <x, <b (fig. )
If the optimal control is s the Bellman equation becomes

A(l,x,x;)
a

(amn

+ L (0x,,x, v(t, X, %) = " (4,x,,x,) =0 for u,

and
&";'Ll)+ L' (X, % W {(1,x, x5 ) = £ (£,x,,x,) €0 for u,
(12)

Let

+ L x ) v(t, 0, 0,)

N &H(,x,,x
8" (1) = )

Then

S x ) =g (tx,x,) for - (1D
SO, 0) =g (,x,,x,)+ ¢ for any (>0 for  (12)
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For the case that 4, is the optimal control, r(s,x,,x,) can
be chosen similarly. As a consequence f*(/ x,,x,) €an now

be determined explicitly using the following expressions.

SUUx,x) T

gi(t,x),x,) if (xzsi and u=u,)or(x,>l- and u=u,)
g Lx )+ ¢ il (x,s7 and u=u,)or (x; > and u=u,)

With the above construction of test case, the Bellman
equation can be solved not only exactly but also
numerically . The following parameters are employed for
the computational solution of the test case.

1205, 8=03, n,=05, (=1,
=a=f, y=-2, A=2

S. Application to A Satellite Example

We consider an attitude control problem of a satellite of
which orbit is possibly in Low Earth Orbit. Such a satellite
experiences an oscillatory motion about its desired attitude
because of the effects of gravity gradient and aerodynamic
torques. This oscillation, called libration, is detrimental to
the proper function of the satellite, such as pointing
accuracy of a satellite. In general, the librational motion
which mainly resulted  from gravity gradient and
aerodynamic torques is characterized by 3-D motion of
roll, pitch and yaw. A parameter contributing most to the
aerodynamic torque is the local atmospheric density. Since
the density fluctuates and its fluctuation increases with
altitude, it can be modelled as a stochastic process. As a
simple example, we take only the plane pitch motion which
is described by the following equation [7].

6 +sin 8—1sin26+ 1, ~u+ G, (sin 6+ n,§H)w =0 13)
Let
(9} =0

WL =0 =diy, (),
Then the above equation can be written as
d ()',:,.). (_5') RECTAC
()} Emy (s, (5))

J A @) St o) ,[ (x)}
O;I (S.y,",, (s)) U:z ("-.V;t' () Wy (s)

(14)

where

m(s,y;, () = (11,),(5)
my (s, vy, (8)) = =sin{(y;, ), (§)} +Isinf2(v;, ), ()} - e (W o (5) +u

on 8y, () =0 =03 (5, V() =03 (5, p7, ()

{5y, (s)=-8, {sin((¥;, ) (s} + 1, (NG

Parameters for the above nonlinear pitch motion of
equation can be obtained by applying a stochastic Liapunov

function method {7,10]. The following stability condition is
used to choose parameters(i.e.s,, ,, 1) for the numerical

experiments.

21, (1-20)
St 77 15
°<l+n3(l—21) s

The following set ¢ is taken as the domain of this satellite
example,

Q={(x,,x,): -l<x, <, —l<x, <1}’

Physically x, and x, represent pitch angle and its angular

velocity respectively. By the domain we implicitly assume
that x , x, vary within this domain. We take the following

quadratic cost functional for the problem of minimizing
pitch error.

J(t,x, 1) = E,_,[J,Mh(r")exp{—c(.v— DHY (HQY(s) +nd }ds
+exp(-c(T-O}Y (MSY(T) (T < 1)]

(16)

where

Vi s)
Y(s)= N
@ [(.v,'f,)l(s)}

Take @ =7 = § for simplicity.
Comparing the above cost functional with the standard
form (2 ), we obtain

LYy = F (DO (5) +rid
VIIUTY) =Y (THOV(T).

With the above ) anq ¢, the Beliman equation (4) for the

case of satellite example can now be solved using the
algorithm (5) described in section 3.
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6. Computational Results and Discussions

In this section, computational results for both of the test
case and the application problem are presented and
discussed. In order to measure the performance of the
algorithm and also check the correctness of computer‘

results, two kinds of errors are introduced [12].

Absolutc error = EJ, = max|v], —v, |
id
. A ) ol
Relative error @ E7, = n};’xxl\’,'f, =V
where

v/, and v represent the numerical solution at i, iteration

and exact solution respectively.

Since the algorithm is based on contraction mapping, the
relative error has to decrease rapidly. Figure 2 shows this
property. It also shows that the absolute error stays
constant after certain number of iterations, which we call
the steady state error. This gap of error is probably due to
the Taylor series truncation and the number of grid points
taken for finite difference approximation of the operator
I*(1.x). Table I shows that error decreases as the number
of grid points increases. This is reasonable in terms of finite
difference approximation that more grid points give better

solution.. Figure 3 shows the map of optimal controls

obtained for the test case, which exactly matches with the a
priori map (Figure 1). Based on the above discussions, it
can be concluded that the algorithm gives correct

solutions.

For the application problem, it is also observed that the
convergence rate is fast. Figure 4 shows typical four
different kinds of the map of optimal controls for the
control problem of a satellite influenced by the disturbance
torques. Some of the maps for certain times are omitted
because they have small variations from these maps. Since
the Beliman equation is solved backward in time, we have
to reverse the time in order to interprete these maps. From
the map it can be seen that near the final time (t = 0.001 ~
0.004), there are more varieties in the map. This can be
interpreted that near the final time, more varieties of
control actions are required in order to achieve the desired

goal of controls.

7. Conclusions

In this paper it is shown that how the dynamic
programming method can be applied for the control of
nonlinear system. The Bellman equation of parabolic type is
solved by using the algorithm based on finite difference
approximation and contraction mapping method, We show
how a test case is constructed for testing an algorithm.
Computational results of the test case show that the algorithm
gives reliable solutions. As a result of computational solution,
maps of optimal controls are obtained for the nonlinear

attitude control problem of a satellite.
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Errors
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Fig. 1 : Domain of the Test Case L
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Figure 2 : Errors versus number of iterations
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Fig. 3 : Map of optimal controls (6x6)

Table 1. : Effect of number of grid points

Grid L ny S.S. E. Parameters
4 x 4 0.02 5 0.2804E-01 e=3=c=a=f
6x 6 0.01 10 0.2236E-01 r=-2, 4=12

8 x 8 0.006 17 0.1831E-01

Note : S. S. E. : Steady State Error (absolute)
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