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Abstract - An effective and disturbance suppressible con-
troller can be obtained by assigning the left cigenstructure
(eigenvalues/left eigenvectors) of a system. However, the dis-
turbance decouplability is governed by the right eigenstructure
(ecigenvalues/right eigenvectors) of the system. In this paper,
in otder to obtain a disturbance decouplable as well as effective
and disturbance suppressible controller, the concurrent assign-
ment scheme of the left and right eigenstructure is proposed.
The biorthogonality property between the left and right modal
matrices of a sy.iem as well as the relations between the achiev-
able right modal matrix and states selection matrices are used
to develop the scheme. The proposed concurrent eigenstructure
assignment scheme guarantees that the desired eigenvalues arc
achieved exactly and the desired left and right eigenvectors are
assigned to the best possible(achievable) sets of eigenvectors in
the least square sense, respectively. A numerical example is
presented to illustrate the usefulness of the proposed scieme.

I. INTRODUCTION

The problem of eigenstructure assignment (simultancous as-
signment of eigenvalues and eigenvectors) is ol great importance
in control theory and applications because the stability and dy-
namic behavior of a linear multivariable system are governed
by the cigenstructure of the system({1]. In general, the speed of
response is determined by the assigned eigenvalues whereas the
shape of the response is furnished by the assigned cigenvectors.

The eigenstructure assignment algorithm can be divided
into two groups, that is, the right cigenstructure (cigenval-
ues/right eigenvectors) assignment and the left eigenstructure
(cigenvalues/left eigenvectors) assignment, and their roles in a
system are different[2]. The right eigenstructure assignment
is widely used to solve mode decoupling problems{3]-[6], and
to design a controller for the vibration suppression of flexible
structures[7]-{9], and can be applied to disturbance decoupling
probleras{10]. On the other hand, the left cigenstructure is used
to define the controllability measure{11] and also can be used to

design an eflective and disturbance suppressible controller{12}-
[16].

Thus, in order to obtain a disturbance decouplable as well
as effective and disturbance suppressible controller, the appro-
priate assignment of a concurrent eigenstructure (that is, si-
multaneous assignment of the left and right eigenstructure) is
required.

In this paper, a concurrent eigenstructure assignment scheme
is proposed by using the biorthogonality property between the
left and right modal matrices of a system as well as the relations
between the achievable right. modal matrix and states sclection
matrices. The whole procedure of the proposed scheme is at-
tractively simple and provides more insight into the concurrent
eigenstructure assignment. The presented scheme is illustrated
by a numerical example.

II. ProOBLEM FORMULATION

Consider a linear time invariant multivariable controllable
system

(1) Az(t) + Bu(t) + E (1)

m n

= Az(t)+ Z it () + Z e fi(t), (n
k=1 =1

u(t) Kz(t), (2)
2;(1) Djz(t), for j=1,2 (3)

where (i) z € RN, u e R™, f ¢ R*, z; € R, and z; € R™,
(m £ N, and r; + r2 < N) denote the state, control, distur-
bance which is assumed not to be directly measurable by the
controller, and controlled output vectors, respectively. Aud b
and ¢; are the k-th and [-th column vectors of the control input
matrix /7 and disturbance input matrix E, respectively; (ii)
A, B, E, K, and D; are real constant matrices of appropriate
dimensions; and (ii1) rank B = m # 0.

The responses of the state and the controlled output of the
given system due to control input u(t) and disturbance f(t)
with zero initial conditions are represented, respectively, using
the modal matrices of the system by[17], [18]
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Z(t) = D,-tb/u'e’\("T){\IlTBn(r)+ YTEf(r)}dr,i=1,2 (5)

where (i) ® and ¥ are the right and left modal matrices of the
closed-loop system, respectively, and A is the diagonal matrix
of the desired closed-loop eigenvalues; (1) A;, ¢; and t; are the
i-th eigenvalue, right and left eigenvectors of the closed-loop
system, respectively, and ux(t) is the k-th control input; and
(iii) Dy € RN and Dy € R™*N matrices are chosen to the
controlled outputs z;(t) and 23(2) be composed of disturbance
decoupled states and composed of (at most) the other states,
respectively, by a designer depending on the system considered,
and are called the orthogonal and parallel states selection ma-
trices, respectively,

Nole, from Fgs.(4),(5), that the response to the disturbance
f(t} can be climinated if the columus(y;) of ¥ are orthogonal
to the columns(e;) of E. Thus, for suppressing undesired dis-
turbances, it is required that the left eigenvectors of the system
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lie in the space orthogonal to the coluinns of E. Note also that
the control efforts are effectively transferred (that is, the de-
sired maneuver is achieved with small control efforts), if the
left eigenvectors are parallel to the columns(bg) of B. There-
fore, for both effeclive control and disturbance suppression, it
is required that the lelt eigenvectors of the system lie simul-
taneously in the space orthogonal to the columns of E and
parallel to the columns of B, at least, in the least square sense.
Then, the corresponding system can be manipulated with small
control efforts without being disturbed by the disturbance in-
put. Therefore, it can be said that the left eigenstructure of
a system plays an important role in desigring an cffective and
disturbance suppressible controller(2], {13]-[16].

On the other hand, the system is said to be disturbance de-
coupled relative to the pair f(-), z((-) if, for each initial state,
the controlled output z(t), ¢ > 0, is the same for every f(:).
Thus, disturbance decoupling simply means that the forced re-
sponse

z(t) = Dy /t AT Bu(r) + YTEf(r)}dr =0 (6)

(4]

for all f(-) and t > 0[10]. That is, from F£q.(6), if the right
modal matrix & resides in the subspace of the kernel of the
orthogonal states selection matrix Dj, the system (Egs.(1),
(6)) is disturbance decoupled. Thus, for solving disturbance
decoupling problems, the appropriate assignment of the right
eigenstructure of a system is required.

Meanwhile, for the rp-states of z;(t) determined by D, the
columns of the right modal matriz ® are required to be parallel
to the rows of the parallel states selection matrix D, in order
to preserve the control effectivencss and disturbance suppress-
ibility of the controller obtained by the appropriate assignment
of the left eigenstructure of the system. Otherwise, that is, if
the columns of @ are designed not to be parallel to the rows of
Dy, the control efforts may not be effectively transferred to the
controlled output z;{t), even though the columns of ¥ are de-
signed to be paraliel to the colutns of B for maximum control
efforts transferring.

Fach eigenstructure assignment scheme has been studied
individually by many researchers. However, a concurrent eigen-
structure assignment problem has not been solved because of its
inherent conflicting nature of the left and right eigenstructure
of a system. That is, if the left eigenstructure of the system is
determined, the right one is also determined of itself, and vice
versa.

In order to obtain a disturbance decouplable as well as effec-
tive and disturbance suppressible controller, the left and right
eigenstructure should be assigned to the appropriate ones si-
multancously. Thus, the objective is to find a concurrent eigen-
structure assignment scheine to obtain such a controller.

I11. PRELIMINARIES ON FIGENSTRUCTURE ASSIGNMENT BY
STATE FEEDBACK

In this section, we briefly review the right and left eigen-
structure assignment schemes individually for an understanding
of what is to follow.

Consider Eq.(1) in section II. If state feedback(Eq.(2)) is
applied to Fq.(1), the closed-loop system becomes

#(t) = (A + BK)z(t) + Ef(1). (7)

Let A = {A1, --- ,An} be a sell-conjugate set of distinct com-
plex numbers. Then, the right and left eigenstructure problems
for the closed-loop system can be defined by(19]

(A4 BK — X\In)$i =0, (8)
PIA+ BK - NIy) =0 (9
where Iy is an (N X N) identity matrix. For the case that the
system has repeated eigenvalues, the cigenvalue problem can

be easily generalized[20].
Fach problem of the right and left eigenstructure assign-

ment is then to choose the feedback gain matrix K such that
the required conditions for the eigenvalues and eigenvectors are
satisfied, and therefore may be considered as inverse eigenvalue
problem.

The right modal matrix ® can be denoted as

®=[¢i, ¢2, -, By ooy NI

In the following matrices ¥ and W are defined similarly, and
the superscript (-)* denotes the conjugate of a given complex
vector or scalar (-).

As mentioned in the previous sections, for solving distur-
bance or mode decoupling problems using eigenstructure as-
signment scheme, the appropriate assignment of the right eigen-
structure of a system is required.

To present the previous result on right cigenstructure as-
signment, we define the following two matrices.

Ny,
S,\_-E[/\;IN—/\ ] B], R,\'E -
M,

where the columns of the matrix Ry, form a basis for the null
space of §y,. For rank B = m, it can be shown that the columns
of N, are linearly independent[3].

The following theorem gives necessary and suflicient condi-
tions for the existence of K which yields the prescribed right
eigenstructure.

Theorem 3.1(3]
Let {A1, Az, -+, An} be a self-conjugate set of distinct complex
numbers. There exists a real (m x N) matrix K such that

(A+ BK)¢; =X, i=1,2,---, N

if and only if, for each 1,

1) {¢1,¢2,- -+, ¢n} are alinearly independent set in CN, the
space of complex N-vectors

2) ¢i = ¢; when A; = A

3) ¢ = span {Ny}.
Also, if K exists and rank B = m, then K is unique.

Remark:

In general, for a system which has repeated eigenvalues, the
result of Theorem 3.1 can be easily extended and well described
in Ref. {20].

The theorem indicates that the closed-loop right eigenstruc-
ture assignment by state feedback is constrained by the require-
ment that the right eigenvectors lie in certain subspaces. That
is, the desired right eigenvectors are achieved in the least square
sense, guaranteeing the exact assignment of the desired eigen-
values, by an appropriate linear combination of the column vec-
tors of the null space of [\;/y — A | B]. Note that the theorem
provides only a right cigenstructure assignment scheme.

Now, we shall point out the emerging problem when we try
to assign a left eigenstructure using Theorem 3.1, The matrix

form of the equation(Eq.(9): the left eigenstructure problem)
can be represented by

[MIn—=AT | In}| -—~-=- =0. (10)

where the superscript (-)! denotes the pseudo-inverse of a given
matrix (+).

In this case( £q.(10)), the feedback gain matrix K is given in
the least square sense because the control input matrix B in the
equation is not square in general, and therefore it is expected
that the achieved closed-loop eigenvalues may not coincide with
the desired eigenvalues{16]. Thus, the left eigenstructure as-
signment scheme by state feedback based ouly wpon Theorem
3.1 is of little use. This fact can be explicitly verified by the
following simple example.
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Ezample 3.1
Consider a controllable system given by

e [b ][]

Let a set of the desired closed-loop eigenvalues be {A;, A;} =
{-1, —2}. Then, the following matrices delined in this section
are obtained.

v 04414 0.0353] , [ 08828 0.0707
T —0.1577 0.3046 {'"™ T 1 ~0.0316 0.9492 |°
Vo - 0.3150 0.0120] , [ 09451 0.0388
M = 1 _p.0841 0.2393 |72 T | —0.0213 0.9701 |-

The first and second columns of the achievable left eigenvectors
are given as a linear combination of the matrices Ny, and Ny,
by Theorem 3.1, respectively. That is,

¥1 = Nypi,

where the vectors p, and pp are linear combination coeflicient
vectors. If the vectors p; and p, are selected by p; = {1 07
and p; = [1 1]T, then the achievable left modal matrix ¥° is
obtained by

Y3 = Ny p2-

e e ey [ 04414 03280
v =l 1/’2]—[--01577 0.1552]'

The feedback gain matrix K is calculated as follows:

[~Map1 — Ma,pa] [BT0? BTy5)!

i

KT

It

[-0.2766 ~ 3.1104]F

and therefore the eigenvalues of the resulling closed-loop system
{A + BK) are given as 0.8596, —0.9701, which are completely
different from the desired one (i.e., —1, —2) since the feedback
gain K is obtained in the least square sense. It is due to the
singularity of the matrix [BT¢¢ BTyg]. This verifies the in-
consistency of the desired eigenvalues with the achieved ones.

The left eigenstructure assignment scheme plays an impor-
tant role in designing an effective and disturbance suppressible
controller. Choi et al.[14]-{16] found that a left eigenstructure
assignment scheme by state feedback using Theorem 3.1 cannot
be directly applied to get the desired left cigenstructure, and
thus proposed a novel left eigenstructure assignment scheme,
that does not depend on the theorem, using only the biorthog-
onality property between the right and left modal matrices of
a system.

The left eigenstructure assignment scheme makes it pos-
sible to achieve the desired closed-loop left cigenstricture ex-
actly, provided the desired left eigenvectors reside in the achiev-
able subspace. In case the desired left eigenvectors do not re-
side in the achievable subspace, the closed-loop eigenvalues are
aclieved exactly and the left eigenvectors are assigned to the
best possible set of eigenvectors in the least square sense.

The details of the scheme are reported in Ref. [16] but
are briefly summarized here for completeness. These details
form the basis for an understanding of what is to follow. The
derivation procedures are the following.

According to Theorem 3.1, the achievable right eigenvector
¢? should lie in the span of {Ny,}. An achievable right modal
matrix ®* is defined as follows:

" = [¢], 83, -+ LT, - PN (1)
and ¢? is given as a lincar combination of the columns of Ny,
that is,

¢ = Napio (12)

In Eq.(12),the (mx1) coellicient vector p; is chosen to minimize
the following performance index

J =¥ 85, P - Inll (13)

aug
where the (mN x N) coeflicient matrix P is formed as follows:

P = block diag [p1, p2, -+, Piy -, PN] (1)
The (N x N) matrix ¥? is determined appropriately according
to the guideline described in Ref. [16] to reflect the specified

modal controllability and disturbance suppressibility weight-
ings, and the (N x mN) augmented achievable right modal
matrix &3, is formed as follows:

q):ug:[NAn N,\,, ey Ny, e Nr\N]' (15)
The vector p; minimizing the performance index J is given by
the following equation

pi = () e (16)

where the (N xm) submatrix £; is a component of the following
matrix {(¥HTo2 1 of dimension (N x mN)

[, O, oy 2y o N ={(EDTEL) (17)
and the vector ny is the k-th column of an (N x N) identity
matrix corresponding to the k-th submatrix of {(¥)T®2 3.
Then, the achievable right modal matrix ®* is given by the
following equation

Pt = @7, P (18)

Considering the biorthogonality property between modal

matrices, the achievable left modal matrix ¥°, satisfying the

design specifications in the least square sense (in case the de-

sired left modal matrix ¥? does not reside in the achicevable
subspace), can be represented by

e = ()T, (19)

The feedback gain matrix A for obtaining the achicvable left
modal matrix ¥* is calculated by using the null space of Sy,
and the obtained achievable right modal matrix $°.

IV. CONCURRENT EIGENSTRUCTURE ASSIGNMENT

In this section, a simultaneous assignment scheme of the
left and right eigenstructure of a system is proposed. The pro-
posed assignment scheme can be used to obtain a disturbance
decouplable as well as effective and disturbance suppressihle
controller. However, the concurrent eigenstructure assignment
(simultaneous assignment of the left and right eigenstructure)
problem has not been solved hecause of its inherent conflict-
ing nature of the left and right cigenstructure of the system.
That is, if the left eigenstructure of the system is determined
in advance, the right one is also determined of itself, and vice
versa.

Thus, the objective of this section is to find a solution for
the concurrent eigenstructure assignment in the least square
sense to overcome the inherent conflicting nature of each eigen-
structure. That is, if the following three conditions are satis-
fied simultancously, the desired left and right modal matrices
are achieved in the least square sense guaranteeing the exact
assignment of the desired eigenvalues.

@ [(‘Il")T~¢:“gP—]N] = 0, (20)
@Dy, P = 0, (21)
(DT K — ®3,,P-5) = 0 (22)

where Dy € R"*¥ is the orthogonal states selection matrix,
D, € RN is the parallel states selection matrix, ¢; are weight-
ing factors corresponding to each condition and 0 < ¢; < 1
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(i=1,2,3), Ei-’:lq.- = 1, and P € C™N*N is the coeflicient
matrix to be determined.

The first condition( Eq.(20)) denotes the biorthogonality prop-
erty between the desired left modal matrix((¥9)T) and the
achievable right modal matrix(®4,,P), and can be used to
design the left eigenstructure of a system. The second con-
dition (£q.(21)) denotes the orthogonality property between
Dy and 93, P. By adding the second condition to the first
one, the corrupted disturbances in the states selected by Dy
(i.e., z1(t)) are decoupled in the least square sense. The third
condition( £q.{(22)) denotes the parallel condition between Dy
and #3,, P, where the matrices K,and § = {1,582, ",3r,] are
a linear combination coeflicient matrix and a state selection
matrix, respectively. The element vector s;, which is equal to
the transpose of the i-th row vector of the parallel states se-
lection matrix Dg, of the matrix § denotes a column selection
vector of the matrix &%, .

Now, our objective is to {ind the feedback gain matrix K
which yiclds ¥* and $® with exact desired eigenvalues, satis-
fying the imposed three conditions simultaneously in the least
square sense, through choosing P and k;j, which are the cle-
ments of the matrix K, using the given Dy, Dy, ¥9, P3,g and
qi-

For couvenience, we vectorize the clements of the coefficient
matrix P in Eq.(14) as

p= [plrs p’{,
If we assume, as an illustrative example, that all the three con-
ditions are imposed only on the i-th achievable right eigenvector
simultaneously and for the other achievable right eigenvectors,

only the first two conditions are imposed, then the stacked aug-
mented coefficient vector Payg including the linear combination

RS SR 1Y (23)

coeflicients k,; is formed as

ﬁnug = [I"lrv p;‘v"'vp;r» l:?,‘l, I}iZy"'inirzy p;“;—lv""pﬁ]T‘ (24)
Ny e’

Piug

a1
used for determining the i-th achievable right eigenvector satis-

fying all the imposed conditions. The dimension and elements
of the vector P, are determined by the imposed conditions on
each achievable right eigenvector.

Then, the imposed three conditions ( Fg¢s.(20)-(22)) can be
represented by the following compact form.

The elements of the i-th augmented coeflicient vector Fu; are

T i;aug =1 (25)

where the vectors faug € C™V472, 5 € RN(N+ridtra and T €
CIN(N+r+m2)x(mN+12) are given in this special case, respec-

From Eq.(25), the stacked augmented coeflicient vector Payg is
given by

i’\aug = T'Uy (29)

and from Eg¢s.(20)-(22), the achievable right and left eigenvec-
tors are given in the least square sense.

In general cases, that is, all the three conditions are imposed
on the achievable (N-1) right eigenvectors of a system with
repeated eigenvalues, the dimensions of the vectors Payg, 77, and
the matrix T are extended appropriately.

Remember that the objective of this study is to find the
state feedback gain matrix K satisfying the imposed three con-
ditions described in this section in the least square sense. The
following algorithm gives such a gain matrix. The algorithm
guarantees that the desired eigenvalues are achieved exactly
and the desired right and left eigenvectors are achieved in the
least sqnare sense.

Algorithm:
e Step 1: Determine the desired eigenvalues ();), corre-
sponding desired left eigenvectors (¥¢), the orthogonal

states selection matrix Iy, the parallel states selection
matrix D,, and weighting factors ¢; (i=1,2,3).

o Siep 2: Find the following matrices
Ny

My,

SA.E[/\;IN—-A I B],‘R,\ =

where the columns of the matrix Ry; form a basis for the
null space of Sy,.

s Step 3: Construct the augmented achievable right modal
matrix 92, given by Eq.(15).

aug

o Step 4: Calculate the stacked augmented coefficient vec-
tOT Paug satisfying the three conditions described in this
section in the least square sense.

o Step 5: Form the achievable right eigenvectors
#: = Napis
and construct the achievable right modal matrix ®°¢.

e Step 6: Construct the achievable left modal matrix ¥°
using the biorthogonality condition ((¥*)T$° = In) be-
tween the left and right modal matrices of the given sys-
temn.

e Step 7: Calculate vector chains and construct the matrix
W as follows:

tively, by wy = —Mypi, W =[w, wy -, w, -, wyl.
Paos R STH E TR SN PRI 5 LN (26)
Niry Nin Nedritrs Nt
N = 0---00 I8
! N 0 0.0 g 0---00---0 q ], (27)
Lat nd tth Nth
Qi
0 0 0
7Ny,
Q
0 N 0
@i Ny,
1] 0 0 0
_ 0 | O, (28)
0 DNy, ] O, 0
gaNy, | X
0 0 0 0
Q
o 0 0 NN
DNy
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where X denotes the following matrix

o Step 8: Calculate the state feedback gain matrix which
yields the achievable right(®2) and left(¥*) matrices with
exact desired eigenvalues satis{lying the imposed three
conditions simultaneously in the least square sense

K= W@

Remark:

In Step 1 of the algorithm, the desired left modal matrix ¥y
can be determined to have the specified modal controllability
and disturbance suppressibility{11}, [13]-[17], [21] in order to
obtain an effective and disturbance suppressible controller.

V. AN ILLUSTRATIVE IEXAMPLE

In this section, a numerical example is presented to illns-
trate the proposed design scheme.

Consider » third-order two-input continnous controllable
system with a disturbance,

1) = Az(t)+ Bu(t) + Ef(1)
[ 010 00 0
= 00 1{zW)+ |0 1t lu@w+] 0]
[—2 1 2 10 |

The open-loop spectrum of A is given by AP = {-1, 1, 2}.
Let a set of the desired real distinct eigenvalues be AT = {M,
Ay, Az ) {-1, -2, -3 }. From the given system,
N, m, and n are 3, 2, and 1, respectively. Assume that the
desired left modal matrix ¥% and its normalized matrix ¥¥_
using (¥ 9; = &;;) are determined, to have the specified modal
disturbance suppressibility according to the guideline described
in Ref. {16}, as follows:

0.6 0.7 0.65
vt o= |02 02 02 |,

0.2 0.1 0.15

0.9045 0.9526 0.9333
i o= | 03015 0.2722 G.2872 |,

0.3015 0.1361 0.2154

and the orthogonal( D;) and parallel( D3) states selection ma-
trices are given, respectively, as follows:

1 00
01 0
That is, it is assumed that the third state (i.e., 3(t) = 2,(t))
is chosen by Dy as an orthogonal (to the right modal matrix)
state, and the other two states (i.e., [z1(t) z2(0)]7 = 2,(1)) are
selected by Dj as parallel (to the right modal matrix) states.
Consider the following two cases for demonstration.

Dy=[0 0 1]}, 1)2:[

Casel: ¢y =1,¢2=0,g3=0

In this case, the biorthogonality condition (E¢.(20)), among
the three conditions described in the previous section, between
the desired left modal matrix and the achicvable right modal
matrix is considered only, and the other two coaditions corre-
sponding to the weighting factors q; and ¢3 are neglected in
this case. In other words, the left eigenstructure assignment
which used to design an eflective and disturbance suppressible
controller is considered, and the right eigenstructure assign-
meut that used to decouple the disturbance of the system is
not considered lere.

According to the design procedure described in the previous
section, the normalized achievable left modal matrix W& s
given in the least square sense by

0.9177 0.9250 —0.9153
ve . = | 03611 0.3542 —0.3815
0.1655 0.1378 —0.1288

|

“(13172
BN —ra)xrs

]er;

The feedback gain matrix Kgase 1 is given hy

40.6 14.4 2.6

Kener = [ ~20.2333 —10.6 —3.5667

.

In this case, all the three conditions (Fqs.(20)-(22)) are con-
sidered simultaneousiy. Thus, it is possible to assign the con-
current eigenstructure of the given system in the least square
sense

Similar to Case 1, the normalized achievable left and right
modal matrices are given in the least square sense as follows:

0.9150 0.9308 —0.9108
0.3585 0.3451 -0.3991 | ,
0.1852 0.1206 —0.1054

-0.1977 0.4035 0.3050
0.1977 —-0.8069 -0.9150
0.9601 —0.4314 0.2642

]

We assume that the disturbance with magnitude one is cor-
rupted for a sufficiently small time interval for investigating the
impulse responses of the states of the closed-loop system for the
two cases. That is, the following impulsive disturbances(4(?))
is applied:

Case 2: ¢ = 0.9, q; = 0.05, gz = 0.05

pe

nor

¢ =

nor

The fecdback gain matrix Koase 2 is obtained by

: 19.0019  5.8185 —0.9094

feme2 = | _1) 3361 —7.0006 —2.0801

f@) =4,

and all initial conditions are assumed to be zero in the two
cases.

Figure 1 shows the designed closed-loop system responses
for each state due to the disturbance. In the figure, Case 2
shows better regulation performance in spite of the corrupted
disturbance in all states compared with Case 1 since the or-
thogonality (the 2nd condition) and parallel (the 3rd condi-
tion) conditions are considered additionally. That is, the left
eigenstructure of the system is assigned to have the desired
disturbance suppressibility and modal controllability, and then
for the first two states, the right eigenstructure is assigned to
preserve the control effectiveness and disturbance suppressibil-
ity of the controller designed by the appropriate assignment of
the left eigenstructure of the system, and at the same time, to
decouple the suppressed disturbance for the third state in the
least square sense. The results are consistent with our intent
in this paper.

VI. CoNcLUSIONS

In order to obtain an effective, disturbance suppressible and
decouplable controller using eigenstructure assignment tech-
nique, a simultaneous assignment scheme of the left and right
eigenstructure (concurrent eigenstructure assignment scheme)
is required. In this paper, the concurrent eigenstructure assign-
ment scheme has been proposed by using the bivrthogonality
property between the left and right modal matrices of a sys-
tem as well as the relations between the achievable tight modal
matrix and states selection matrices. The proposed concurrent
cigenstructure assignment scheme gnarantees that the desired
eigenvalues are achieved exactly and the desired left and right
eigenvectors are assigned to the best possible(achievable) set
of eigenveclors in the lcast square sense. A numerical example
has been presented to confirm the usefulness of the proposed
scheme.
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Figure 1: Impulse responses for the two cases
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