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Abstract

In this paper a closed-form predictive control which
takes the intervalwise receding horizon strategy is pre-
sented and its stability properties are investigated. A
state-space form output predictor is derived, which
is composed of the one-step ahead optimal output
prediction, input and output data of the system. A
set of feedback gains are obtained using the dynamic
programming algorithm so that thcy minimize a multi-
stage quadratic cost function and they are used peri-
odically.

1 Introduction

The stability propertics of RHC for state-space models
were cstablished in late 1970’s[8} for a special case of RIIC.
From late 1980's, it was shown that stability of RII controllers
is closely linked to the monotonicity(in matrix sense) of the
solution of the RDE ([3], [1}). The investigation of the stabiliz-
ing properties of RHC was extended [or periodic time-invariant
systems in the state-space framework. Il seems that the no-
tion of PRII (periodic receding horizon) control was first intro-
duced in Kwon and Pearson [2] under the name of intervalwise
RII control with reference to the periodic stabilization of timne-
invariant systems. There a special case of PRI was derived

with the terminal constraint z(r) = 0.

More general results on PRH control of discrete systems
are very recent. Yan and Bitmead[7] considered periodic stabi-
lization of time invariant systems, whereas e Nicolao[6] con-
sidered both periodic and time-invariant systems. Although
based on different. point of views, both contributions are agree
on the {act that cyclomonotonicity of the solution of the Ric-
cati equation is essential in order to guarantee stability of the
closed-loop. Very recently, Nicalao{5] showed that cyelomone-

tonicity is more easily achievable than monotonicity.

‘Thus, it is desirable to obtain a PRIT control law for 1/0

models to achicve stability more easily and enhance the per-

a{t) w1} (1N
P "
t: k i |
W) L u(tem

. 1 §

t+N : r 1 {
w(tezNel) . . u(teN)

. 1 | ]

t+2N I 1 1

Time

Figure 1: The Periodic Receding llorizon Strategy

formance. It scems that, however, there has not been PRH
control law for [/O models. Although the standard GPC solu-
tion contains the multiple future control inputs, they arc open
loop control inputs except the first one. {n this paper, a pe-
riodic GPC which takes the closed-loop intervalwise receding
horizon control strategy is derived for I/O models. The con-
cept of intervalwise receding horizon control which is depicted
in ig. 1. At timet, gains Ko, K1, -+, Kn -y are calculated and
control inputs u(t), u(t+1),- -, u(t+N —1) arc determined and
applied to the system at time ¢, t+1,: -+, #+N —1 respectively.
The control inputs u(t), u(t + 1),-- -, u(t + N — 1) are deter-
mined based on the data up to time t,t+1,---, t+ N — 1 and
the gains I<}, K3,+ -+, K(y.1 respectively. The whole procedure
is repeated from time t + V.

In order to obtain the periodic GPC, it is required to solve
DRE(difference riccati equation). However, periodic GPC do
not. require a state estimator and multi-stage output predic-
tors. I must be noted that periodic GPC is different from
applying the control inputs which is obtained in the procedure
of the standard GPC. A periodic RHIC is also introduced and
the equivalence between periodic GPC and periodic RHPC is

proved.

2 Cost Function of Periodic GPC

Consider the following CARIMA model:

a(g () = bla )Au(t) + (g E() M

- 173 —



alg ) = rl,r(q'])A =14ag - tang ", £0

2

g ') = big Vkbyg Pk bug ™

ey 1) = 14cq " deg ™

It is well known that the CARIMA model (1) is equivalent.
to the following SISO state space model:

Bt+1) = Ac(t) + Bedu(t) -+ DL )

y(t)

i

Hem(t) + (1),

where
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Periodic GPC is designed for the system represented in the

CARIMA model (1) to minimize the lollowing cost function:
J =y ko )

where

N

N
Jo= Y e+ 5) = w4 e + D A+ A)as)
71 770

Ny
Jro= B b+ 3) =t + o) ()
J=N+1

where |lzflg is %:ETQ:I:, Q € 1™ is a positive semi-definite
symmetrie matrix, and Qp € R and € R™™ are positive-
definiie symmetric matrices. We assume that Au(t 4 7) = 0 for
JmNFLNA2- - N4-Np The control input Au{t 4 5), § =
0,1, N, is determined based on the data available at time
t + 7, respectively. Nole that this constraint is different from

that of GPC in whch the future control inputs are determined

bascd on the data up to the present. time t. The optimal control
sequence Au(t), Au(t + 1), Au(l + N) are caleulated and
applied to the plant, AL time t + N + 1, the whole procedure

is repeated.

3 Periodic GPC

Consider an one-step ahead optimal output predictor as

follows:

elg A+ 1) = Pula Yy(t) + bg ) Au(r) %)
where
Pl = (e —an) + (2 —a2a bt (oo an)y

= pl+pg 4+ +phgt!

Thus we get:

n
Gty = Zp,‘y(z E1 7Y (et 1 g) b Ault i 1 - 5)
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n
He+D = D P2 A - eE b2 - )4 bAu( 2 - )
J-1
()
n
i _ 1 : . .
W+ N ENp) = zPiy(l FN FNg - 5) -t § N+ Ne - )

=1

bjAu(t + N + Np - j}

where (1 +14), 4 = 1,2,--- | N 4+ Np are the optimal one-step
ahead output prediction which is the expected value of the
output y(f + 1) based on the data up to time { +1 — 1.

Il we defline:
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and
X(t+4) = ii(t + 1), 6)]

j=t

then we can get the following recursions:
i) = AX(Q+i-D)+Bdult+i-1)  (10)

+De(t+1i-1)

where
et +i) = ylt+i)~5{t+1)
Ay o= HTA_I, i23
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—ay
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D= H'D 0 Di=lmpe a0 -0
From Equations (9) and (10), we get:
N(L+i) = AX@E+i-1)+BAut+i-1) (12)
A Dt 4+ - 1)

Pr4+d) = HyIF ' X(t+4).

It is easy to check that system equation (12) is equivalent to

the following Model:
X+ = AX{Eri-1)+BAu(t+i-1) (13)
+Dee(t+i-1)
gt +3) = H.X(t+14)
where X{t 4+ i) = (11
PN N R N R 27 (R R )|
E;‘,,p}y(t Fi G ) et e ) HbjAu(t b4 1)

E;‘f.‘p;y([ Fimjr2) —ei(t4 i+ +bdu{t+i-5+2)

phy(t i 1) =it 41~ 1) 4 byAu(t +i- 1)

and the matrices A, Be, D, and D, are deflined in Equation
(3). The optimal solution which minimizes the cost func-
tional (4) is obtained utilizing the dynamic programming(DP”)
technique[4] and the systemn equation (13) as the {ollowing the-
orem.

Theorem 4.1 The optimal solulion which minimize the cost

functional (4) for the system (1) is given as follows:
Au(l+4) = —(R+ BYFEB) 'BIFGE)(AX (L +i)15)
+Dec (L +13))+9() i=1,2, - N

where

PE) = AT+ 1)A, — ATFG+ 1) BJAR + BTFGE + 1)B,] !

BYPGE+ VA4 HIQI., i< N (16)
Neldooo
F(NY= 5" AL HIQunT A (17)
i=0

AT + F(j + 1) B.R' BT 'g(t + 5)
-HIQy(t+4) Jor jS N
ATg(t +3) = HTQry, (L + §)
Sor N+1<j<N+Np-1

gt +5—1)= (18)

with g(t + N + Np = 1) = HTQpy.(t + N + Np).

Following the same procedure as that of RIIPC, we can ob-
tain the periodic solution of GPC when the terminal weighting

Qr = ool from Equations (16) -(18) as the following theorem.

Theorem 4.2 Let Qp = fI, then the control law (15)-(18)

becomes as follows as [ — oo:

Au(t +1) = =R BIFHAX (L +1) + s(t +14)] (19)

where F(i) and s(t + #) are obtained from the following recur-
sions:

F) = ANFk DA 4 AFGR L AT HTQUT (20)
U QA F R+ DATRHIQUH QP 1A
Flk + DAT 4 B BT
FNtY = Br'pT

s(tb ) = AP FRADATHIQH A s(t 5+ 1) (21)
A F(R A )ATHTQ
JHAZ Fe 4 DASTHTQ 4 1) Yyt k)

SN+ = -LYr
where
Le = [Leo Loy Leng -1

with I ; € 1t such that HAlLc; = 1.
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4 Stability Properties of Periodic GPC

in order to consider the stability of the system (1), we
consider the stability of the auxiliary system (13) first. The
reference sequence 4y (b + #) is assumed to be zero as far as the
stability is concerned. Substituting the control law (15} into

Pquation (13) yields:
X(t+it+l) = (A- B.Z(DA)X (L +17)

+ (D, - B Z ) Do)t + i)
where

Z.06) =+ BIEGYRY) T BIEG).

Thus, we can sce that the stability of the auxiliary system (11)
depends on the stability of the matrix A — B.Z(i)A., i =
1,2,--. N and the bhoundedness of the signal e (1). The stabil-
ity properties of the matrix A= B Z(DNA, 1 =12, N is
{he same as that of periodic receding horizon control of Kwon
and Pearson[2] and Nicolao[s]. Purthermore it is well kuown
that the boundedness of the signal ec(1) is guaranteed il o(q B
of the CARIMA model (1) is a Hurwitz polynomial. Note that
the system (1) is stable il §(1) and (1) is bounded. From the
above arguments we can say that the stability properties of
periodic GPC is the same as those of periodic RIC if ¢(q M
is a Hurwitz polynomial and the periodic CGPC enjoy the ad-

vantages of periodic RITC over GPC.

5 Conclusions

A periodic GPC which take the intervalwise receding hori-
zon control strategy was derived for 1/0 models. In order to
obitain the periodic GPC, it was required to solve RDE(Riccati
difference equation). Iowever, periodic GPC do not require a
state estimator and multi-stage output predictors. The stabil-
ity of the periodic GPC was shown to be determined by that of
periodic RIIC and that of the one-step ahead predictor. Since
the cyclomonotonicity of a RDE can be achieved more casily
that the monotonicity of a RDI, it is expected that the sta-
bility of periodic GPC can be achieved more easily than the
CPC. Tt must be noted that periodic GIC is diflerent from
applyving the control inputs which is obtained in the procedure

of the standard GPC.
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