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Abstract

In this paper, an output feedback adaptive variable struc-
ture control scheme is presented for stabilization of large
scale power systems. An additional input signal which is
called a power system stabilizer (PSS) is needed to im-
prove the stability of a power system and to maintain
the synchronization of generators. The proposed PSS
scheme does not require a priori knowledge of uncertainty
bounds. It is guaranteed that the closed-loop system is
globally uniformly ultimately bounded by the Lyapunov
stability theory. Simulation results for a multimachine
power system are given to show the feasibility of the pro-
posed scheme and the superiority of the proposed PSS in
comparison with the conventional lead-lag PSS of PID-
type.

1 Introduction

Large scale power systems including the exciters and speed
governors are usually subject to be affected by parameter
variations and external disturbances. In the presence of
severe disturbances, a power system accelerates quickly
one or more generators, and then their synchronizations
become lose. To improve the power system stability, an
additional stabilizing signal is inserted into the excitation
system. The controller generating this additional stabi-
lizing signal is so-called the power system stabilizer (PSS)
1) ~ [6].

There are several methods used in power system stabi-
lizers. Especially, the following three control methods for
power systems have been developed and used: the con-
ventional lead-lag compensator of PID-type controller |2]
[3]; the optimal control theory [4]; the variable structure
control (5] [6]. The above each method has the several
typical problems. First, in the case of using the lead-
lag circuit, the control gain tuning is not easy and te-
dious process, furthermore, time-consuming. Secondly,
the optimal control requires a nonlinear Riccati matrix
equation to obtain the optimal feedback gain, and thus
it needs a lot of computational time. Finally, as a kind
of general robust control, the variable structure control
(VSC) such that the prescribed performance is achieved
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with the robustness to uncertainties has been much re-
searched. It has been well-known in generally that this
control method has the following problems: chattering
phenominon, reaching time and a priori knowledge of un-
certainty bounds. Third problem of the above three prob-
lems is critical in practical implementations and large
scale complex systems.

In multivariable large scale real application systems,
to measure all states is not easy, and requires very high
costs and many good equipments [7]. Specially, the gen-
eral power system is large scale and very multivariable
one. It is necessary to develop an output feedback con-
trol scheme achieving the desired purpose by measuring
a few available states, namely output signals.

In this paper, we present an output feedback adap-
tive variable structure control (OFAVSC) scheme using
the Lyapunov stability theory. The proposed control
scheme is applied to the power system stabilizer in or-
der to overcome the problems mentioned in the above
statements. The presented scheme is based on elimina-
tion of the restrictive assumption that the uncertainty
bounds must be a priori known in the conventional ro-
bust control including VSC. The proposed scheme does
not require the matching condition for uncertainties. To
show the feasibility and usefulness of the presented sta-
bilization scheme, simulation results for a multimachine
system are presented.

2 Problem Formulation

The incremental model of exciter-generator power sys-
tems can be expressed as the following state-ouput equa-

tions. & = A(t)z + B(t)u + d(t) (1)
S ca (2

where £ € R" is the state vector; u € R™ is the control
input vector, namely the output of PSS; y € R* is the
output vector of measurable signals or states; dt) e ®"
is the disturbance vector such as load power and mechan-
ical torque variations, etc.; A(t) = A, + AA(t) € R
is the system matrix; B(t) = B, + AB(t) € ™™ is the
input matrix; A, and B, are known constant nominal
values and the pair (A,, B,) are completely controllable;
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AA(t) and AB(t) represent unknown parameter varia-
tions; AA(t), AB(t) and d(t) represent the uncertainty
terms and are continuous functions; C € R7*" is the out-
put matrix. '

The objective of the work is to develop a control law
which guarantees that the closed-loop system has the uni-
formly ultimate bounded solution with a tolerable error
under no knowledge of the uncertainty bounds.

The following assumptions are needed to develop a
controller.

Assumption 1: (Lumped uncertainty)

It is assumed that all the uncertainties can be lumped.
Rewriting the state equation (1),

T = A,z + B,u + n{t) (3)

y = Cz (4)
where n(t) =AA(t)z + AB(t)u + d(t) € R" is called
the lumped uncertainty.

Assumption 2: (Bound of uncertainty)
There exists an unknown positive constant p such that
for allt € R,

Inll < » (5)
Throughout this paper, the norm |}-|| is assumed to be
the Buclidean vector norm, that is, |{z|| = (.’ETJ:)%,.Z € R,

3 Output Feedback Adaptive Vari-
able Structure Control

In the case that all state variables are measurable, the
sliding hyperplane of the state feedback VSC/AVSC sys-
tem is usually defined as the following equation.

s(zy=Px (6)
where P € R™*", s € R™, P is full rank, and PB, is a
nonsingular matrix.

Now, the dynamic sliding hyperplane can be defined
to construct an output feedback controller as follows.

oy,z2) =S y+ S22 (M

where S; € R™*? and z is the controller state variable of
the following dynamic observer found as several kinds of
the order.

i2=Fz+Dy+FEu (8)

where S, F, D and E are constant matrices whose dimen-
sions are determined according to the order of z. z is a
vector satisfying the following in steady state.

z2=Tzx (9)

The meeting conditions of the sliding hyperplane o
with s are found by the following lemma.

Lemma 1: (7] The asymptolic coincidence condition

of s(z) and a(y, 2z}, namely lim,o a(y, 2} = s(z).
i) 5C + S;T r (10)
i) TA, - DC = FT (1)

Il

iii) E = TB, (12)

iv) All eigenvalues of a matrix F must have negative
real parts. In other words, F must be Hurwitz matrix.

Proof: Substituting (7) into (4) and (9), the dynamic
sliding hyperplane in steady state is as follows.

o= Sy + Sz = (5,C + S;T)z = Px. (13)

The above equation shows the condition i). The condi-
tions ii) and iii) are obtained by comparing the equivalent
control system. The equivalent control system using (6)
and the equivalent control system using (7) are as follows,
respectively.

{4, — B,(PB,)"'PA,Jz = Az
(A, — Bo(S1CB, + S;E) !
(S1C A, + S2DC + S;FT)|z = Aggox

(14)

(15)
Here, substituting the condition i) and setting such that
A s equal to A, the conditions it} and iii) are easily
obtained. Defining the error e = T'z — 2, the final condi-
tion iv) is found by obtaining the dynamic equation for
e in the equivalent system.

Tt =

z =

(TA, - DC)z + Dy + Eu,,
Fz+ Dy + Eu,

Subtracting (17) from v(16), the following error equation
is obtained.

e=Fe (18)
Therefore, if F is Hurwitz matrix like the condition iv),
then since e — Oast — oo, thuso(y,z) — s(z) ast — oo.

0

We now consider the form of an adaptive variable
structure controller as follows.

U = Uy + Uy + UA (19)

where 1. is the equivalent control input, u, is the control
input determining the dynamics of o(y,2) and u, the
control input overcoming the uncertainties.

First, u,, is found from 6,,m = 0.

drmm = Slynom + S2‘énom
= (PA, — 5:FT)z + $;Fz+ (PB,)u,; =0 (20)
Ueg = —(kyy + k.2) (21)

where

kyy +k.z = (PB.) Y(PA, — SeFT)z + S:Fz]  (22)

Since y = Cz, equation (22) can be expressed as the

following two equations.

it

k,C
kl

(PB,) Y (PA, — S5FT)
(PB,)'S,F

il
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where k, can be directly determined from (24), but it
is very difficult to exactly and directly determine k, in
general from (23). Therefore, it is necessary that we use
the method for finding k, and &, approximately.

Now, let’s consider an approximate decision method
of k, and k,. It is assumed that k, and k, are approxi-
mately determined by the following equation {7].

[ k,,j k] = (PBU)“FAD[J ¢ ]_1 (25)

. C|. .
From the above equation, [ T ] is a square and nonsin-

gular matrix. For to be the square matrix, the

dimension of a matrix 7" is {n — p) x n. Thus, the dimen-
sion of z becomes (n — p).

When the above k, and k, are used, the following
equation is obtained.

I

ky+k,z k,Czx+k, Tz - k,Tz+k,z (26)

(PB,)'PA,z — k.e (27)
Then, u,, is as follows.
Upy = —(k,y + k.2) = —(PB,) 'PA,z + k.e (28)
Substituting the above u,, into (20), we obtain
Gnom = (PBok, — S;F)e=Qe (29)

where Q = PB,k, — S, F € R™*{"=?)_ Therefore, k, and
k, of (25) cause the error as much as Qe as it can be
seen in the above equation. This error term Qe can be
considered as the modeling error and is overcome by the
following adaptive variable structure controller.

Now, to define u,, finding the dynamics of the sliding
hyperplane,

6 = 519+ 52
S51C(Aoz + Byu+ 1)+ S3(Fz+ DCx + Eu)
(PA, — S$FT)z + 5;Fz + (PB,)u + §,Cn.(30)

u, is defined as follows.

u, = —(PB,) 'Ko (31)

where K = K7 >0 € R™ ™ is a constant matrix.

Inserting (19), (28) and (31) into (30), the dynamics
of the consequent sliding hyperplane is
6 = ~Ko + (PB,)ua + 1. (32)
where the uncertainty term is as follows.

7= Qe+ 5,Cn. (33)

We can assume the following like equation (5).

Assumption 3: (Bound of uncertainty)
There exists an unknown positive constant g such that
for all t € RY,

Il < 5 (34)

The control input u, stabilizing the dynamics (32) is
defined as follows.

up = (PBo)—l_ﬂAa iy = — =G o(y,2)

(35)
where G = GT > 0 € R™ ™ is a given constant matrix.
p is the estimate of p and called the adaptive bound. e is
a positive-valued function, namely €(t) > 0 V¢. A special
choice of € is €{t) = Aje7>*, and A; and A, are positive

. (s
Tl + €

constants.
Defining an adaptation law as follows,
llx]f?

llafl +¢

b=l A0 (36)
where h > 0 is a constant and ~(t) is a positive-valued
function defined as follows.

- _Nalle

=7 >0 Vt, 3>0€eR. (37)
llell + ¢

The above presented controller is summarized below.

U =t tugtuas (38)
- cl?
g = —(ky+hz), [k k| =(PB)'PA| L |(39)
v, = —(PB,) ‘Ko (10)
- N U
ua = (PB,) 7 'ia, ia= p”a”+€, a=Go (41)
: llell® . o lledle
= h — = 0. 42
P = e = T Moy 770

The stability of the closed-loop system is analyzed by
the following theorem.

Theorem 1: Under assumptions 1 ~ 3, the dynamical
system' (3) and (4) with an adaptive variable structure
control law (38) ~ (42), is globally uniformly ultimately
bounded.

Proof : Consider a following Lyapunov function can-

didate. 1 .
V=_0TGo + —5" 43
2° o+2hp (43)
where g = p — p.

Taking the time derivative of V yields
; T, L.z T
V = o' Go+ pop =0 G[S:1C(Asz + Bou + 1)
1.
+53(Fz + Dy + Eu)] + Eﬁﬁ

= 0TG|(PA, - $;FT)z + S;F 2+ (PB,)u+ S,Cn| + %ﬁ,';.

Rewriting the above equation by substituting u., and u,
of (39) and (40) and using assumption 3,

1%

—0TGKo +oTGPB,us + oT5 + %ﬁﬁ
1.
< —6"GKo +0"GPB,us + pllal| + N

Substituting za of (41) into the above equation

— 179 —



= 2
—pllallt + pllale 1._.
I ” fleell ¥}

vV < —aTGKo +
- lexlf + € h

(11)

where 5 = j.

Subsituting the adaptation law (42) into the above
equation,

V < ~6TGKo+w< —Anin(GK)|lo|* +w  (45)

where GK is a positive definite matrix according to the
definitions of G and K, Apmin(GK) is the minimum eigen-
value of GK and w is as follows.

l|ale

v = ﬂ;”*_;:(ﬂ = App)- (46)

It is found that V < 0 for llo|| > @ where @® = A—l‘(’(,—,()

Therefore, as can be found in the above results, o is
globally uniformly ultimately bounded (g. u. u. b.).

In the case that € = Aje™, \; >0, A; > 0,¢ - 0
as t — oo. Here, we can find the following fact: If € — 0,
then the uniformly ultimately boundedness approaches
the asymptotic stability, however, it causes the chattering
phenomina.

0

Remark 1: From Theorem 1, we can find the trade-off
between the magnitude of tracking error and the chatter-
ing of control input due to e.

By the above Theorem 1, the uniform ultimate bound-
edness of the sliding hyperplane has been shown. Now,
the stability of the state vector z is shown by the [ollow-
ing theorem.

Theorem 2: In the case that the sliding hyperplane
o is equal to zero, if a matrix P is selected so that a
matrix A, = [4, — B,(PB,)™' P A,] is asymptotically sta-
ble matrix, then the state vector z is also asymptotically
stable.

Proof: The proof is achieved by analyzing the equiv-
alent control system. The augmented equivalent contro}
system composed of state vectors z and e is found as
follows.

= Az+ Bouyy = [A, ~ Bo(PB,) ' PA,)z + Bok,e (47)
¢ = Ti—3=T(Aoz+ Boueg) — (Fz + Dy + Eu,)
= (TA, - DC)z+ (TB, — E)u, — Fz
= FTz—Fz=Fe (48)

Therefore,

z A, B, T y_ T
HE M WG
where A, = A, — B,(PB,)"'PA, € R"*", B, = B,k, €
Rrxln-p) O g Rlr-pIxn and A, € R(2n-p)x(2n-p)
The eigenvalues of A,, is made by the eigenvalues of

A. and F. Hence, in order that A., is Hurwitz matrix,
that is, to be asymptotically stable matrix, both A, and

I’ must be Hurwitz matrix. Since the condition that a
matrix F is Hurwitz has been given in Lemma 1, now only
A, has to be Hurwitz matrix. Therefore, if a matrix P is
selected so that the matrix A, is asymptotically stable,
then the state vector z is also asymptotically stable.

m]

By Theorem 1 and 2, the global stability of the closed-
loop system has been completely guaranteed.

4 Simulation Results

To show the feasibility of the power system stabilizer us-
ing the proposed output feedback adaptive variable struc-
ture control scheme, simulation results for a multima-~
chine system are presented.

The multimachine system considered here is a power
system which has three generators and bus with long dis-
tance as shown in Fig. 1 [6]. TFig. 1 shows the three
plant/infinite bus system. In Fig. 1, plant #4 effectively
represents an infinite bus. Fach plant is represented by a
single equivalent machine with machines #1, #2 and #3
rated 360 MVA, 503 MVA and 1673 MVA, respectively.
Each machine was provided with a static exciter.

Pion No.1
(THERMAL)
01293 +10.7169
0.4257 g
2008
4- 0.1782 +)0.7993
PLANT No.2 4 PLANT No.2
(HYDRO) AT 0T 053 HYDRO)
@ 0.0628 +10.4745 @
01121 o.4218
212 .
22 0.0668 + | 0.3520 s
AANTNG. 4 |4
1=40)
@ Vo028 + 10.6508
02009 |
1714 (Admittances In PU on 1000 MVAY

Fig. 1. Three machine/infinite bus system.

The linearized system model is expressed as the fol-
lowing state-output equation.
z = A, z+B,u+tn (50)
y = C=z (51)
where z=[A8, Awy, Ae,, Aepp, Af, Auw,

u°

1 1 1 '
Aey,, Aepp., Abs, Aws, Aey, ACFD;]T»
0 0080000 0 0ooo o 17
Bi={0 00 0 000090 00020 0 ,
000 0 000 0 00 0 1000
002 000 0 000 o 0o0]l7
B,=|[0 0 000015000 0 0o0],
0 0 000 0 000 011 0 0
B, = B1+ Bz, n= B Av,.y + By ATy,
1000000000 TGO0 O
C={00001000000 0],
: 00000CO0O0GOGTI1IO00O00

u=[u, ug, U3]T e y= (A6, ASy, A53]T € R,
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0 377 0 0o 0 [} 0
—0.147 -0.039 -0.013 0 0.022 0.004 0
-0.266 —3.393 -0.922 1 ~0.087 0.754 0.024
—30.1 -309.14 -60.943 -20 24599 -91.99 -3.501
0 0 0 0 0 377 0
A = 0.004 ~0.034 -0.087 0 -0.149 0.032 ~0.008
o 0.121 1.131 0.021 [} -1.6 —1.885 -0.21
—18.48 —-64.47 -12.58 0 106.08 —516.11 -21.67
0 0 0 0 0 0 0
0.001 -0.017 —0.003 0 0.017 -0.01 0
0.083 0 -0.002 0 0.22 (4] 0.011
L -10.1 —33.93 -6.78 0 1.7 —46.37 -2.1

The physical meanings of the above variables are as follows.

A linearized incremental quantity (variation).
§ power angle or torque angle.
w angular velocity.
“ . .
€ g-axis component of voltage behind
transient reactance.
erD, equivalent excitation voltage.
v reference voltage.
ref g
Tm mechanical torque.

The transfer function of the power system stabilizer
composed of the lead-lag compensator and filter is as fol-
lows.

Kg]‘os 1+ Tls 1+ T38

His) = 1+ Tos1+ Tyst+ Tys

(52)

By tuning the parameters Ky, T, Ty, T2, T5 and Ty appro-
priately, the power system can be stabilized. In this sim-
ulation, three above conventional PSS are inserted in the
system. The parameters of three lead-lag compensator
used in this simulation are given as follows.

1(01 = 05, Kog = K03 = 500, ]‘01 = Tog = ,1‘03 = 3.0,
Ty = Ta1 = Thg = T3z = Ty3 = T33 = 0.15,
Ty = Ta = Tz = Tyz = Tas = Ty3 = 0.05.

The control gains and parameters of the proposed
OFAVSC used in this simulation are given as follows.

15 0 0 2 00
K=|0 1 0|, ¢g=|0 20},
0 0 15 00 2
Ay =001, A, =001, §=0.1.h=17.

Two kinds of disturbances are given as the step change
at 5 seconds at the same time.

1. Variations of mechanical torques : step change of

AT, = ATm, = ATm, = 0.05 p.u.

2. Variations of reference voltages : step change of

Avy,.y, = Dvpep, = Av,,q, = 0.05p.u.

This simulation has the comparison between the pro-
posed OFAVS-PSS (output feedback adaptive variable
structure-power system stabilizer) and the conventional
lead-lag PSS. The results are shown in Fig. 2 ~ Fig.
7. Fig. 2 ~ Fig. 4 show the angular velocity deviation
profiles of each generator, that is, Fig. 2 for generator
1, Fig. 3 for generator 2 and Fig. 4 for generator 3, re-
spectively. In other words, Fig. 2, Fig. 3 and Fig. 4
show the responses of 3, z¢ and x5, respectively. The
response of the sliding hyperplane ¢ is shown in Tig. 5.
The corresponding control input u and adaptive bound p
are shown in Fig. 6 and Fig. 7, respectively.

oo oQo

b
53

cooo

0 0 [} 0
0.046 0.02 0.003 Q0
~-0.25 1.131 0.072 0
62.051 —-1675 -10.194 0

0 0 0 0
0.079 -0.028 0 [}

0.46 0.754 0.06 0
1699 —171.91 -11.41 0

0 377 o 0

-0.056 —0.017 -0.009 0
-1.2 —-1.131 -0.197 1
70.1 -893.49 -54.4 -20 |

Consequently, the proposed PSS has been simply and
successfuly applied to the interconnected complex mul-
timachine system. It is found that the proposed PSS
stabilizes suitably and quickly the system even under
abrupt disturbances. Comparing the proposed PSS with
the lead-lag PSS, it is shown that the dynamic perfor-
mance of the proposed PSS is superior to that of the
lead-lag PSS. Therefore, it is found that the proposed
OFAVS-PSS is feasible and effective.

5 Conclusions

In this paper, a power system stabilizer using an out-
put feedback adaptive variable structure control scheme
has been proposed for robust stabilization of the power
system under external disturbances. The control scheme
does not require a priori knowledge of the bound of norm
on uncertain disturbances such as variations of mechani-
cal torques and reference voltages. The proposed output
feedback control scheme is very effective and useful due
to simple measurement of available output signal in prac-
tical large scale complex and interconnected systems.

Simulation results for a multimachine power system
have been presented to show the feasibility of the pro-
posed control scheme. Comparing the proposed scheme
with the conventional PID-type lead-lag compensator,
it is shown that the dynamic performance of the pro-
posed scheme is superior to that of the PID-type lead-lag
scheme, for example, shorter settling time, small oscilla-
tion, etc..

Unlike VSC, the dynamic performance of AVSC can-
not be usually predetermined because of the adaptation
mechanism. In other words, that reason is the same that
the dynamic response of adaptive control cannot be pre-
scribed. A study that the dynamic performance of AVSC
can be predetermined like VSC by more improving cur-
rent AVSC theory is left to the further work.
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Fig. 2 ~ 4 Dashed line : The conventional lead-lag Pss;

Solid line: The proposed OFAVS-PSS.
Fig. 5 Solid line : ¢;; Dashed line: 05; Dashdot line: 03.
Fig. 6 Solid line : u;; Dashed line: uz; Dashdot line: uj.
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Fig. 2. The profiles of angular velocity deviation in machine 1.
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Fig. 3. The profiles of angular velocity deviation in machine 2.
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Fig. 4. The profiles of angular velocity deviation in machine 3.
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Fig. 5. Sliding hyperplane ¢ when the proposed PSS is used.
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Fig. 6. Control inpnt u when the proposed PSS is used.
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Fig. 7. Adaptive bound j when the proposed PSS is used.
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