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Abstract

A passivity-based adaplive controller for rohots ex-
ecuting fine motion tasks is proposed. The robot dy-
namics is modelied such that it is subject to holonowmic
constraints and hence it can be treated as a particular
case of constrained motion tasks. Eunergy-motivated
stability analysis is used to conclide the asympiotic
stability. Remarks regarding the structure of the con-
troller are given. A comiputer simulations study is pre-
sented and a robust constraint stabilization algorithm
is also proposed.
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1 Introduction

Steadily the industrial needs are moving toward
tasks that demand finer trajectory tracking capabil-
ities. There are high precision tasks that demand al-
most perfect trajectory tracking such as optical inspec-
tion, surgical operation, space applications, cte. These
kinds of tasks are termed fine motion tasks. Scveral
approaches have been proposed which rely on the ex-
act knowledge of system dynamics whose control ob-
Jective is pure trajectory tracking of the end-clfector,

In this paper a rather dilferent approach is taken:
the robot dynamics is treated as a dynamical system
subject to an algebraic constraint ([1],[3]). This cou-
strained manifold can be interpretated as a virtual
boundary which the manipulator cannot transpass.

This boundary can be seen as a growth surlace of

the enviroment and the control ohjective is trajectory
tracking on this growth surface and stabilization of the
associale Lagrange multiplier (the augmiented system
is balanced now by a Lagrange multiplier). Thus this
problem can be treated as a particular case of con-
straint motion.
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Recently a novel approach for hybrid motion for
robot manipulators was proposcd ([3],[1]). That
schenie has potential applications since it controls the
Lagrange multiplier (whicli in hybrid motion stands
for the contact force). That scheme is a passivity-
hased model-based adaptive controller for robot ma-
nipulators under holonomic constraints. The underly-
ing structure of that controller relics on a joint space
decomposition in such a way that convergence of posi-
tion tracking errors and boundedness of the Lagragian
are guaranteed. ’

As byproducts of that formulation, this paper pre-
sentes a model-hased adaptive controller for robot ma-
nipulators whose task is defined as tracking a desired
trajectory above a surface of an object without col-
liding with it, f.e. line motion task. For this kind of
tasks, usually the end-cllfector is equipped with a tool
(camera, painting gun, etc.) which makes neccesary
the design of an adaptive controller to compensate in-
ertial and gravity loads of the tool and those of the
robot. ilself.

The dynamics of the robot manipulator is now sub-

ject to kinematic constraints snch that an augmented

model can describe precisely the robot dynamics con-
strained to lic onto a smooth invariant manifold de-
lined by the growth constraint surface. In this situa-
tion a Lagragian multiplicr arises in the right hand
side of the robol dynamics.  Contrary to the con-
strained motion case where the Lagragian multiplier
stands for the contact force at the contact point, in
line motion Lasks the Lagrange multiplier associated
with the constraint does not have a physical incaning.

It is the Lagrange multiplier in the calculus of vari-
ations.  Using the gradient of the growth constraint
surface, Lwo transformations are derived in order to
formulale a passivity-based adaplive controller!. The
glohal convergence of tracking errors and the hounded-
ness ol the Lagrange multiplier are shown via energy-
motivaled stability arguments. Computer simulations
show Lhe performance of the controller and it is com-
pared against. the popular computer torque method
and model-based adaptive control (Slotine and Li’s).
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For simulations purposes, typical constraint stahiliza-
tion is used to keep the system onto the constraint
manifold via a simple PD controller that plays the
role of a “numerical impedance”. Here a sliding mode
control term is proposed to carry out the robust cou-
straint stabilization.

This paper is organized as follows: Section 2 de-
scribes the robot dynamics subject to holonomic con-
straints and states a key assumption. In Section 3 a
global joint space decomposition is derived. Section 4
proposes an asymptotically stable adaptive controller
which guarantees globally the convergence of track-
ing errors. Section 5 a robust sliding mode constraint
stabilization algorithm is proposed. Section 6 shows
comiputer simulations, and finally Section 7 presents
some discussions and concluding remarks.

2 Robot Dynamics under Holonomic
Constraints

Fine motion taks can he seen as constrained motion
tasks if they arve defined in such a way that the robot
end-eflector moves on a surface defined above the en-
vironment. It is assumed that a model of the surface
of the object is available and this model is twice dil-
ferentiable. Let

O()=0

denote. the m~—stooth surfaces O(x) : R — R
where X [a:,,xg,;vg] represents the cartesian coor-
dinates. And hence, the end eflector is to move on a
growth or augmented surface ©'(2) = O(z) + 6 = 0.
In the following 6 > 0 is omitted since the augmented
surface can be treated simply as a new surface. There
exists a smooth function f @ R" — R? such that
X = f(q) establishes the mapping between the carte-
sian space and the joint space ¢ = [q,,...,¢,]). The
smooth surface can now he expressed in terms of ¢ as
follows

(q) = 0 (1)

‘where @(q) : R" — R™. Diflerentiating (1) yields

Jolg)g =10 (2)
where ) ;
de Oy
s = —-— = =, r 3
]‘*'(q‘) ¢ - dx ()

where J,. denotes the standard Jacobian matrix of the
robot manipulator. In joinl space the velocily vector
arises onto the space tangent at the contact point Lo
that surface, and hence the columns of (3) span the
space normal at the contact point. The model of a

rigid serial n-link with all revolute joints described in
Jjoint coordinates is given as follows:

. L e
Ilq+(Bn+§II+b)q+g=U (4)

where [T = 1I(q) denotes the n x n symmetric pos-
itive definite inertial matrix, By an n x n positive
definite matrix of damping cocficients, g = g(q) the
gravity forces, S = S(q,4) an n x n skew symmet-
ric matrix, and U the torque input. For fine motion
tasks the robot dynamics (4) is subject to an algebraic
consiraint [3] (¢) = U. Simply calculus of variations
finally leads us to a constrained robot dynamics given
by

1. L
11;,'+(U(,+§// + Si+g=U+JIx (5)
wlg) = 0 (6)

where A plays a role of the Lagragian multiplier in the
caleulus of variations.

According to the task, it can be viewed that the
vobot dynamics are constrained to evolve on a 2n-
dimensional invariant manifold

Mo ={(q.9) € R™ xR" 1 ¢(q) = 0,Jp(q)q =0} (7)

This invariant manifold implies that (5) is singular
in 2n-space. N suggests that there exist a transfor-
mation that can reduce the degrees of freedom, ac-
tually the holonomic system (5)-(6) has n degrees of
freedom and m holonomic constraints to be satisfied
for all time. It in turn implies that m-dofl can not
change its initial configuration, and therefore there are
n — m position-controlled degrees of freedom and m
"Lagrange multiplier”-controlled degrees of [reedom.
In the next scction, following the guidelines of the
Orthogonalizalion Principle, we derive two transfor-
mations that effectively decompose the state space of
tracking crrors and finally enable us to state global re-
sults by using only hnearly independent coordinates.

3 Joint Space Decomposition

We now outline the scheme proposed in [3). The
constraimts (1) are considered to be independent and
hence J,(g) bas fwll vow rank. Now define a partition
of the jomt space coordinates ¢ as follows:

q= [q;l“ qg.] (8)

where qp € R"™™ and qo € R™. According to the
implicit. function theorem there exists an open set
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QeR™™ and a function © : R*™™ — R™ such
that

(91, ) =0

For the holonomic constraint (9) to be satisfied, it im-
plies the existence of a unique solution

V€0 (9)

2 =Q(n) (10)

such that (9) is fulfilled Vi, Tn order to derive the
explicit description of (10), consider (2) with its cor-
responding partition according to (8). Then (2) can
be written in the following way:

ITi=Ua(a) Jo2() lir )=0  (11)

where J, | € Rrxin=n Jpa € R™M . Solving
(11) for g4 yields
@2 = =[oa()] ™ Jpi(a)iy (12)
Differentiating (10) with respect to t yields
02 = Qq, 01 (13)
where g, = 280 = —[Ja(q)] " Joilg) : RMT™ —

R™. According to the partition (8) and (12), the ve-
locity of the gencralized coordinates can be written

i= Qi (1)

I .
where Q = [ BTmOL e RX=m) s well posed (see

[7] for details).

Remark 1.- The transformation J,(q) spans the null
space of O, i.e., the n-state space is decomposed into
two orlthogonal subspaces such that R™ can be writlen
as the direct sum R" = R(./,;’;) P R(Q) where R(x)
stands for the range of (+).

In the next section, we rewrite (5) in terms of crror
space by using this joint space decomposition (rasfor-
mations and by exploiting some lundamental proper-
ties of robot dynamics. Then we proceed to design an
adaptive control law.

4 Adaptive Control for Fine Motion
Tasks

Design of model-based adaptive controllers exploits
some fundamental properties of robot dynamics: a)
the left hand side of (5) can be written in Jinear depen-
dence of unknown or uncertain parameters which may
include the coeflicient of the sliding friction forces, 1)
the skew symmetric property of the matrix S{q, 1),

and ¢) the passivity property from input torque to
output velocity. In order to write robot dynamics (5)
in Lthe error space we now define a linear parametriza-
tion of the robot dynamics as follows:

. | T T .
/Iq-l—{/30+§H+S}q+g=}'@ (15)

Equation (15) can be written in terms of a nominal
reference ¢, as follows:

.. | P
11(!1)!1,~+{Bo + ;II(!/) + S(q,q)} ¢+g=Y,0 (16)

where ¢, = Q{14 — oA} and « > 0 with Aqy =
(11 — q14). Adding (16) to both sides of (5) and using
S = ¢ — ¢y, robol dynaniics in the S space is given as
follows:

. 1. .
s + {/?0 + 50+ .5'} S=U+JIA-Y,.0. (17)

Since ¢.= Q4 shding surface S can be written § =
Q{Aq + wAq }. The last equation is fundamental in
the problem: il projects a weighted sum of tracking
crrors onto the space tangent to the growth surface.
Thus, tracking crrors lic onto a parallel surface to the
real surface defined by the enviroment. In this way the
endpoint avoids colliding against the enviroment. At
this stage the problem becommes: Design a controller
U to assure the asymptotic stability of (17). To this
end, we consider the following control law:

U = Y6~ KsS-Jlx (18)
5

-ryrs (19)

where Ny = I\';{ > 1) is a diagonal (n x n) matrix,
I'= 17 > 0is a dingonal {(p x p) matrix and © stands
for the estimate of © at time t. We are now in a
position o state the main result in a theorem.

Theovem 1 Consider robot dynamics (5) in closed
loop with the adaptive controller (18)-(19). The global
asymplotic stability of tracking crrors is assured with
hounded N and hounded parameler estimates in the
Lo -scuse, t.c., :

g(1) — qa(t)  and  (M1),0) € Lo
as { — oo.

Proof.- First consider the Lyapunov function

V= (STHS+20"T7'A0 + AT PAG ) (20)

[0
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Computing the total derivative ol (20) along with {18)
yields . :

V==STKS+5TITAN+ AqT PAG (21)

where N = (Ng+D3p) >0 € nxnie a diagonal matrix
and AN = A — Ay, According to the orthogouality
between @ and JZ and if we chose P = 2w, we
obtain.

V=-Aqlo"Kiadqy = Ad] Ky Adgy = STIT KRS,

(22)
where Ky € RU—mIX(n=m) ynd Ky € RMX™ stands
for the partition of K, R = —J;;le, and S, =
Aqr+alAqy. Applying Barbalat’s Letnma and assum-
ing that g4 € C* and Ay € C', it turns out the global
convergence of position and velocity tracking errors
can be concluded [5]:

q(1) = qa{t) and  q(t) — qa(t) as — o0 (23)

Boundedness of © is irmmediately concluded from (21)
and (22). The boundedness of A is more involved.
Similarly to [6], if the desired trajectories are bounded
and g4 is uniformly continuous all over t, then it can
be shown from (17) and (18) that in the Innit

Y(q, 4, dr, i )A0 = J AN (24)

Equations (20) and (22) in the other hand imply the
convergence of the state Lrajectories (q,¢) and the
boundedness of AO. Thus since q € C*, the left hand
side of eq.(24) 1s bounded. Since the constraint surface
w(q) = 0 is assumed to be C?, and J;‘(q) full cohnnn
rank, then the boundedness of the Lagragian A can be
concluded, namely

AN € Lo (25)

Remark 2.- Since the true parameters © are unknown,
computation of A becomes an issue to discuss. A can
be obtained if the second derivative of the constratned
surlace p(q,q, 1,0, A, 1) = 0 is solved for A by using
the best guess of ©. In this case what we obtain by
solving ¢(q,9,u,0,A,1) = 0 is A instead of A where
A= A\~8, for [6x] > 0. Note that Az can be written
as Ag = Agr + &y, thus AN = A — Ay

Remark 3.- Notice that there is no need to know
At nor &5, The best guess of © can be obtained by
running several times the controller for lree motion
(Slotine and Li's approach). Experimental data indi-
cates that a consistent envelope of parameters © can
be obtained by using a * sin{wt) as the desired tra-
jetories with different amplitude a and differents fre-
quencies w. After we have obtained such estimates it
is still advisable Lo keep Llie adaptive control loop in
the controller because adaptive controllers outperforn
its nonadaptive version ([8]).

5 Robust Constraint Stabilization via
Sliding Modes

The augmented robot dynamics is in fact a set of
n overdetermined diferential equations since the state
must satisfy an algebraic constraint for all time. This
cquation behaves as a very stifl system and several
pathological behaviors are identified trying to solve
DAF via a numerical method for ODEs. Thusa DAS’s
numerical integration scheme must be used to carry
out simnlations

Solving DAEs restricts the solution onto the solu-
tion manifold (7) rather than in the flat Tuclidian
space. Therefore it requires to correct the solution
produced by the integration method. In order to avoid
ihe real solution to drift far off the solution mani-
fold M, we bricfly review the succesful ”Baumgarte’s
method™ which makes the solution manifold a stable
attractor by adding a PD-type controller to the kine-
matic constraint at the acceleration level,

() =0 == @(q) = u,, (26)

It bounds the numerical error with respect to the con-
straint equations. \When the constraints are not satis-
lied, the PD-type additional control term u,, acts as
a spring-damper such that it pulls the solution back
onto My. The controller is given by

ey = —(a + b)) — abp(q) (27)

where a, b >> (0. Substituting (27) into (?6) we obtain
F0) + (0 +D)p(0) + abp(q) =0 (28)

This method removes the double eigenvalue of the
second derivative of (26) to the left side of the complex
plane such that it modifies the stiffness of the closed
loop system. Inside the closed loop there exist an in-
ner control loop for constraints stabilization purpose
that affects the performance of the closed loop system.
The resulting constraint force (the Lagrange multi-
phier) does not strictly satisly ¢(q) = 0 but ¢(q) = ¢,
¢ # 0 such that the closed loop system is stabilized.
The direction of the acceleration changes slightly so as
to satisly Lhe posilion and velocity constraints. This
simple method avoids the nonlinear error propagation
such that the orthogonality of @ and Jg(q) still holds.

Other types of control for contraints stabilization
purposes can be employed such as PID-type or even
nonlinear or adaptive; it depends on the particular
nitmerical method chosen so as to the stability region
ol (28) lics on the stability region of chosen integration
method. Since we do not know O (see remark 2) a
robust constraint stabilization algorithm is required
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Figure 1: Computer torqguie control performance

to cope with the parametric uncertainty in (refeq-pl).
To this end, a sliding mode constraint. stabilization
controller is proposed in this section. Let S., = @(q)+
r(q) be a sliding surface, for v > 0. The purpose is
to induce a sliding regime onto S, = 0 despite of
the uncertainty on © (in (27) we are using the best
guess of @ which difTers from the real ©). To this end
consider a sliding mode control law given by

Ues = —095(0) - I)S[]”(S”) (29)

it can easly be proved that such controller fulfills the
condition for the existence of a sliding mode around
S.s = 0. Equation {29} is discontinuons and Discon-
tinuities in DAEs are very critical from the numerical
integration viewpoint. DAEs solver must accomodate
such discontinuities without cutting step size every
time encountered because if time step h is reduced the
jacobian matrix (if Newton iteration is used) becomes
ill-conditioned, the round-off error makes it imposible
to solve. To overcome this problem a simple satu-
ration function is used instead of the discontinuons
fuction sign(#).

We tested in a computer simulation study this kind
of constraint stabilization controller and we compared
against several others well stablished constraint stabi-
lization controller (PD, PID and adaptive); this com-
puter simulations study reports the superior perfor-
maunce of (28). Plots are omitted.

6 Computer Simulations
Computer simulations on a simple two DOT rohot

manipulator acting in the vertical plane X - Z. Sup-
pose Lhat the fine motion task is to slide the end-

mi Tracking error, X-axis Nm Conirol joint 2

a107]f | &% 20
surlace
0 sec s ¥ T s
0 1 2 0 1 2
mlO‘Tracking error, Z-axis mg Tracking error, joint 1
-0.08 -0.2
0.1 . - sec 0.6 . —Z
[ | 2 0 i 2
Nm  Conlrol joint 1 degg_Tracking error, joint 2
60
4
404 . e ¢ T 3
0 1 2 0 1 2

Figure 2: Slotine and Li’s control performance
o

1d, mt

&10™
Reat surtace

6107

490

2407 [— End eflector

Figure 3: I'racking error in Z axis

effector tool (a camera, for instance) in front of a sur-
face (a mirror, for instance) with a precision within 1
mm without colliding with the surface. The surface is
placed parallel to the Z-axis. The end-effector travels
0.16mt/s. The initial configuration is AZ = —0.1mt¢
and AN = —0.00Im¢ (the end-cffector is onlo the
growtl surface).  Nass and inertial parameters of
both links were considered Lo be uncertain with —10
% crror. The control gains were chosen as [lollows:
I' = 5f Nyg = (50,10), and « = 10. Link pa-
rameters are Iy = lmt, lo = 0.8mt, 1., = 0.42mt,
leo = 057, ml = 10kg, m2 = Thkg, I} = 0.2Kgm?,
and J» = 0.1Kgm?. There is not an intuitive way to
choose Ay, in this simulation we chose Ay = 10N. The
houndary layer in the sliding mode constraint stabi-
lization algorithm is 0.01 and parameters of eq.(28)
were a = 10, b = 50 and v = 10.

All controllers were simulated under the same con-
ditions of -10% on the knowledge of the parameters
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Figure 5: Tracking errors

©. As it can be seen in Fig.l{a) computer torque
controller (poles placed at -240 and -250) makes Lhe
end-effector collide at ¢ = 0.3sec. Fig.2(a) shows the
performance of Slotine and Li’s controller where it can
be appreciated that during transient response the end-
ellector also collides with the enviroment at. £ = 0.1secc.
In contrast Fig.d shows that our proposed controller
attains the required tracking precision onto the envi-
roment with smooth controllers. 1t is interesting to
note that the proposed robust constraint stabilization
algorithm proposed in Section 5 worked for any sin-
ulated conditions while Bumargarte’s method failed
under some conditions (using both equivalent set of
parameters).

7 Discussion and conclusions

An asymptotically stable adaptive controller for fine
motion tasks for rohot manipulators was proposed. It
was also proposed a robust constraint stabilization al-
gorithm to cope with parametric uncertainties in the
manifold defined by the angmented surface. A com-
parative computer simulation study reports the per-
formance of the proposed controller against the com-
puter torque method and Slotine and Li's.
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