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ABSTRACT

This paper presents a nonlinear adaptive control
approach to a 4-point attraction magnctic levitation system
using the local coordinates transformation and neural
network. Based on local coordinates transformations, the
magnetic levitation system can be represented in a state
space form of a 4-input 4-output. Neural networks which
are defined in the new coordinates are used to learn the
nonlinear functions of the system which are defined in the
new coordinates also. The parameters of the neural networks
are updated in an on-line manner according to an augmented
tracking error. The simuliation results are reported in this

paper.
1. INTRODUCTION

This paper presents a nonlinear adaptive control
approach to a 4-point attraction magnetic levitation system
using Jocal coordinates transformations and neural nctwork.

Neural network can be considered as general
modeling tools for nonlinear functions. Although many
related applications and algorithms have been reported, it is
difficult to study the stability issue of the neural-network-

based control syslcm(l”:‘). Recently, convergence analysis

of neural-network-based control system is repnrled(4). In
this paper, these results will be applicd to control a 4-point
altraction magnetic Jevitation system.

Applications of advanced control techniques to
magnetic levitation system have reccived growing
attentions, especially by utilizing robust control theorics

and lech|1iques(5). In controlling a magnetic levitation
system, modeling of a magnelic attraction force is very
important because of its complex nonlinearity. From the
clectromagnetic theory, we know the electromagnetic model
of the magnetic levitation system is usually strongly
nonlinear, depending on the length of the air-gap. Usually,
the magnetic force is considered such that it is

approximately proportional to the square of the current and
inversely proportional to the square of the air gap length
between the magnet and the levitated vehicle. However, in
our case, the proportional coefficient changes depending on
the length of the air gap.

In this paper, the nonlinear system is an unknown
linearizable system with relative degree (rq, rp, 13, 14} = {3,

3,3,3}, and the sum r =1 + ¥y + 13+ 1y is cxactly equal
to the dimension of the state space. Therefore, based on

local coordinates lransf01'1nati0ns(6), the magnetic levitation
system can be represented in a state space form of a 4-input
4-output. However, the time-varing parameters of the
functions in the state equations are unknown. So, a kind of
neural network which is defined in the new coordinates is
presented to learn the nonlinear functions of the system
which is represented in the new coordinates also.

Taking the results of thc convergence analysis
reported recently of neural-network-based control system
into account, the adaptive controller is designed with the
neural network. The parameters of the neural networks are
updated in an on-line manner according to an augmented
tracking error. A local convergence theorem is given on the
convergence of the tracking crror. The simuliation results
are reported in this paper.

2. EXPERIMENTAL EQUIPMENT
21 Modeling of the System

The movable vehicle and the positions of the
magnets are shown as Fig.1. The shape of the levitated
vehicle is like a rectangular shect. There are the
electromagnets, the gap sensors and the linear motor in the
stator. The mechanical differential equations of the levitated
vehicle can be written as:

fupr = Kf +d (n

where
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where x,, is the vertical position of center of the gravity;

v
Xp is the pitching angle; x;. is the rolling angle; m is the
mass of the levitated vehicle; Ip is the moment of inertia in
the direction of pitching niotion; I is the moment of
inertia in the direction of rolling motion; dv’ dp and d,. are
disturbances; f1~f4 is the electromagnetic force produced by

each pair of pulling-up and pulling-down magnets; [ is the
position of the center of gravity and h, k is the distance

between the electromagnets. Since A s an unsquare
matrix, we introduce the following constraint:

0=fi+Ja=So- r
Therefore, the system (1) can be rewritten as
Xppr = Af +d (3)

where
T
Xppr = [xu, Xpo Xr, ()]
T
d =|d,. dp. ;. o]

A= (A m)fl
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m:diag(m, Ip, Ip, 1)

The electromagnetic force is given by (j=1,2,3,4):

i2

= U
J5=K5{95) (4)
gj
where, K ;~K 4 changes depending on the air gap length
14 !
91~94 respectivly. The electrical equation of a coil can be

wrillen as:

oy = Ry g (sles)u) .

Now, clefine
R T
X :[./\‘,Xz."',xlzl
-
u=[u uy uy uy)
as new slates, where, X7, Xgq, X7 ad Xq0 is each air gap
length, respectivly; Xg, X5, Xg and xpp is the speed for
each magnet in air gap length, respectivly; X3. Xg, Xg and
X19 is the current valtue of each coil; uy, Ug, ug and Uy is
the voltage value of each coil. X ypr € be obtained by the
air gap length x;. x4, X7 and x7¢ with the following
equation.
— B T
Xopr = [x1. x4, x7. x10]

h-1 h-L L v
2h 2h  2h 2h
1 1

I St B (6)
B=| 2n 2h 2h 2h
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From (3)~(0), the system can be modeled into a 4-
inputs and 4-outputs system as following:
/.YI = Xg
. k
Xy = Hjtd,+id,+ Edr
R;{x 1
L](Xl) LI(XJ)
,{'4 = X5

.‘.(3 = u;

k5=112+dv+ldp—%dr
Ro{x
(), L

Xg = Uy

G - LZ(X4) LQ(X4) (7)
X7 = Xg ‘
)'(8 = Ii}'f’ dU +(l— h)dp +%d,-

. Rg(X7) 1
Xg = — X9 + g
. 7 Ly(xr) L3(x7)
X10 = X11
Xy = Hy+dy +(l-h)d, —%dr
. Ry(x;0) 1
Xyg =— Xig + u
27 T xi0) P Lalxio)
where,
i 2
X
K1(/"1)}% W
H; Xlg
H2 Kz(X4)_2
X
H= =C 4
Hj K(x4)>2
Hy 7
1(4()(10)—‘]—
oL *10 ]
c=B'A



22 Local Coordinates Transformations

The multivariate nonlinear system (7) we consider
can be described in state space [orm as follows

x = F(x)+G(x)u
T ] (8)
y=[y; vz, ys. ys] =hix)
where
x =[x], Xg, vee, xm]T
u=[u; up us u4]T
F(x) = [fi(%). f2(x). eoo fiz(x)]'} O
h(X)=[X1 Xygq X7 X)()]T

G(x) =[g1(x) g2(x) g3(x) ga(x)]

in which F(x), gl(x)~g4(x) are smooth vector fields as

shown in following

r T
g)(x)=100 000000000
Ly(x))
L
i} 1 ,
g,(x)=]00000-———-000000
i La(x4)
(10)
_ T
g3(x)=]100000000-——000
i Lg(x7)
- | | T
gu(x)=|00000000000 ——
L Ly(x10)
Ji=x2 .
Ja=H+dy+ldp +=d,
R{x
f3= _Ryfx) I)X
Ly{xy)
Ja=x5 .
J5 = 112+Eil, ';ldp —Edr
Rz X
Jo = -2t xg
Lz(X4) an
J7 =xg .
Jg = Hy+d, +(1-h)d,, +§d,
R3(x7)
f9 == Xg
L3(x7)
J10 = x1;
k
Ji1 = Hy+dy +(L-h)d, -5 dr
- _ _Ra(x10)
J12 =-——F<X]2
L4(x10)

where xe B(n=12).
Assumption 1: x will stay in a set %

={x: X3XgXgX| g # 0}

X X

Fig.1 Movable vehicle and positions of the magnets.

For the system, the following condition is
satisfied.
K, (x1)K 5 (x4 )K5(x7 )R 4 (x,0) % 0
From the equations (8)~(11), the following results
can be obtained:
(MNlorall1 <j< 4,foralll £i<4forallk <2,

and for all xe ﬂt,‘ 2
k
LqJLJ‘hl(x) = 0
(2) when the assumption 1 is satisfied, a 4x4
matrix
2 2 2 2
Lgl Léfh] ng Léfhl LgaLifhl Lg4 Léf’ll
§(x) _ Lg‘ Lghz ng szhz LgJszhz Lg/‘ szhz
Lg‘ L:{h3 ng L2fh3 Lga Lg-h3 L94 L2fh3
Lg Lyhg Lg,Lyhg Lo Ly hy Lg,Lshy

X3K1(X1) X6K2(X4)
xFLy(x;) " xFLa(xg)

= Cdiag

x9K3(x7) x12K4(x10)
2 2
x7L3(x7)  xjoL4(x10)
is nonsingular. Therefore, the multivariate nonlinear system
shown in (8) has a relative degree

{n. n.onon}={3 3 3 3
for all x=x,€ K, and
r=n+n+r+r =12
is exactly equal to the dimension n=12 of the slate space. In

this case, the following state transformation can be
suggcslcd(6) 7
z(x) = P(x)
z(x) = [z/(x). z2(x). ..., z12(x)]

®(x) = [p1(x), 92(%). .. 1a(x)]"
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(%), = Lyhy(x)
9(x)5 = LEhy(x)
p(x), = Iz(x)
¢(x)5 = L rha(x)
P(x)g = LiNa(x)
¢(x); = ha(x)
o(x)g = L rha(x)
p(x)g = Lhz(x)
P(x);o = ha(x)

)
(p(x)” = th4(x)
o(x);5 = L:}hzl(x)
Now, put

1 1 1 1
G = diag| —, —, o 1 ]
3 4

= diag(Gy;. Gaz. Ga3. Gyg)

r 7
r 9 Ry |z
Mz bt By it BN ) _E
1(2) L, K1( 1(2) 21)
A R2 ZZ
2(2)] |2 ?(Elz(z)“Ezz)
2 2

4\ Ky ]
E, =[E|(z) Elz(z E,3(z) Em(z)]T
=Dlzz z5 zg ZJQ]T
E; = [Ey(2) Exn(z) Exn(z) Ezd(z)]T
=Amd
D=AmB

then, in the new coordinates the system (8) is descirbed by

the form

= r - — Nonflinear} Y
[Ea. (20)HAdapuve Corp/ol Lawl..» System 1™

—»| Updating Law
yl + -

Fig.2 Block diagram of the controlier.

21 =2y
22773

23 = A|(Z)+ (;] 1y

z4 =25

zZ5 = zg

zg = Ay(2) + Gogtg

Zy = 7g (12)
7Zg = Zg

Z’q = A,:;(Z) + 633113

Z10 =711
211 = 212
Z12 = Ma(2) + Gyqug

T
y= [21 Zy4 Z7 ZlO]
3. ADAPTIVE CONTROL FOR THE MIMO SYSTEM

For the 4-input/4-output system shown in (12),
the states ze Ry are assumed avaitable. Differentiating with

respect to time for ry, ry, rq, ry times, respectively, until

the input appear, onc obtains the input/output form-of (12)
as
y¥ = A(z) + G(z)U (13)

It is clear that, since the inductances L1~L4 arc NONnzero
and finite value, G(z)‘l exists and
o(G(z))2b; >0 (14)

where 6(G(2)) represents the smallest singular value of the
matrix G(z).

31 Structure of the Neural Network.

From the clectromagnelic theory, we know the
parameters L1~L4 and K1~K4 of A(z) and G(2) are the

functions of the air-gap length, therefore we view them as
time-varing paramelers. Define the parameter vector of the
neural network as

T
o=[w' i, (15)
where
- - R . LoqT
wb=[wb1 Wpz Wp3 wb4]
T

T
ol o T o T
w :[wk w,, wy ]

s - - - S 4T
Wy = [y Wky Wiy Wiea)

. T
w”l = [“)Hl”l wmp LUHIT]

R - - R T
wy = [U'Y(IU ujdp lU(Ir]

and put
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D= Adiag(va,,,. 11),p, wy . I)B
. R . . - T o\ - L
E[(Z.w) = [E”(z. w) E|2(Z.W) E|3(Z.IU) E|4(Z.w)]
- T
= D[ZS 26 Zg 212]

Ey(y) = [Ezn(li’d) Ep(wyg) Ep(g) E24(li’d)]T

= Awy
then, the mappings of A(2) and G(2) can be formed as
[y (z.w)
R iz(z,w)
/\(Z. li)) =
A3(z.1b)
Ay(z)|
lbklzlz(‘ll(z'wm)“EZI(wd)) (16)
\/LkaZg( (2. Wi ) ~ Ey(1q))
327 (Er3(2,0m) - Ex(tdg))
| Weazfo(Era(2.bm) - E24(wd))J
G(wy) = diag(p;, Wha, Wh3, Wps)
32 Desgin of the controller

It is clear that, if the paramelers of the system are
constants, there exist © such that the A(Z.lb) and év(lbb)
becomes the exact mapping of A(z) and G(2), respevtivly.

Assumption 2:. In a finite time interval Ti' the
parameters of the system are constants and there exist Ty

such that

max"i\(z (Tl)) A(Ti”)" <€
max|G(wy(T})) - G(Tiy)| < € (17)
Vz e Ry

where € is small enough,

o =[w] W]
Now, let Ot (Tt bt | ) denot the
estimates of © at the time ¢ and let
denot the parameter crror vector. The control law is defined

as follows.
Control law:.

u = G( (zw)+f) (19)

where the control input T is defined as

and Yy, -+, 4 are the reference trajectory.
Define the tracking error vector as
8

e=[e, e, e e4]T
- - - . T
=[0i-u Y2-Y2 U3-us Ys- Y4

With the control input T, the system (13) can be rewritten
as

€§3)+ a13652) + a,zey) +a;;e
6(23)+ (1236(22) + azzeg) +asz;é .
=-0(t)J+E
e‘(j"])_‘. aaaegz) + a32eg) +agz;e3 (21)
_6513)+ a43622) + 0.42621) +Qay; €4J
= AMz) - A(z, )+ (G - G)u
where

E:(O(lé(t)lzj+0(e)][l I
JT=[J, gy I3 Iy

A

Jy=coll— , uw, 0, 0, O
1 ) 1

w,

7
J2=col—a—2 .0, uy, 0, 0]

w,

s
Jy=coll —| , 0, 0, wus, 0
3 bt 3
wl
Ay
J, = col —_ 0, O, 0, u
4 C Y . 4

{

Define (he auginented error as:
T
= [els €25 €35 e4s]

€5 = G 3e( ). C,ze( Vs €€ (22)

(i=1~4)

The parzlmclers C”'CI'Z'CL'? in (22) and a“.a,'z,am in
(20) are chosen such 1hat

2
M. (s) = Ci3S” +CuS + ¢y =N‘(5)

(23

arc SPR (Strictly Positive Real) transfer lunctions and

s'tagst+aps+a;  Dils)
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Ni(s) and .Dl-{s) are coprime (i=1~4). Dcfine the states as:
e, = [e,,,lT ez,uT e3mT e4mT]T
e =[evefe?] L e
(i=1~4)

then (23) can be realized as
én(t) = Aey (1) + b-6(1)J + =]

(25)
es(t) = cep(t)
where
A = block diag(A;, Ay, Az, Ay)
b = block diag(bl, b,. bs, b4)
¢ = block diag(cy, €3, €3, ¢4)
and

0 1 0
Ag=| 0 0 |

“Gy ~Gz 43
b={0 o 1]

T
¢ =[cg cip cl

Then, there exist symmetric and positive definite matrices

P;and Qi (i=1~4)such that

Tp -
A ;9} (26)

where

P = block diag(P;, P, P3, P,)
Q = block ding(@; 92 93 Q)

The parameters of the neural network are updated
according to the following law.
Updating law:
. T 2
. 0 if e,Pe, <d;
©= T T 2 (27)
uJ'eg il ey Pe, >dj
where L is a positive number representing the learning rate,
dgy is the size of the dead-zone.

Assumplion 3: For xe % ,
Ieml <é (28)
|é)| <5

is satisfied, where 8 is smalil enough and § is large enough.

Il the assumptions 1~3 are satist{ied, applying the
results of Liu and Chen(4), the following results can be
readily verilied.

Theorem 1:

(A) The tracking error will converge to the

ellipsoid e,TnPem < dé as { — oo

(B) ‘@(“ )\ will converge (o a constant.

Fig. 3 show one of the simulation resulats of the
vertical position control.

4. CONCLUSION

The adaptive control with neural networks for a
magneltic levitition system has been presented in this paper.
The parameters of the neural networks were updated in an
on-line manner according Lo an augmented tracking error.
The simulation resulats showns that the tracking error
between the plant outputs and the reference trajectories has
converged
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Fig.3 System Output and Reference Trajectory.

— 200 —



