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Abstract

This paper deals with a Baleh processor appli-
calion to delcrmine orbit trajectorics from satellite
tracking date. The purposc of this papcr is to find
the initial state veetors. In order lo defermine the
better estimation process, scveral different cases
arc compared. Here we adapt a minimumn variance
coneepl Lo develop cstimation and prediction tech-
niques. These vesults are compared with by SEP,
Spherical Error Probable, ralues.

1 Introduction

The purpose of this paper is to lind a desirable algorithin
(method) to estimate the initial state of the salellite orbit
by modern estimation and predication theory. There ave
nominal initial states, but observation data of the actual
orbit difler from data of preliminavy orbit using dynamic
equations of orbit from nominal initial states. It is de-
sitable Lo predict a preliminary orbit of satellite with a
prescribed (known) accuracy. The Bateh estimation make
initial stales accurale according to selected dynamic equa-
tion of orbit. UHere, we use mininumm least-square error
criterion.

When several perturbation terms are added 1o basic
two-hoely dynamic equation, the resulls in initial states
are more accurate with the expense of the extra process-
ing time. Qur main goal is to have a high accuracy of
resudts with mininum processing time. Thus we compare
the acenracy and the processing time in several diflerent
cases ol Batch processor.

2 Dynamic mathematical model
description

To develop a computer program to set up the trajeclory
of an Barth-orbiting satellite, we choose a nearly eircular

orbit (an eccentricity of which is abont 0.077) at about
665 kilometer altitude with an inclination of 510 degree.
For this orbit an effeet of gravily potential can not be
neglected according to range, longitude, latitude. In grav-
ity potential equation, terms without longitnde are called
zonal harmonies. Terms with all; range Jogitude, and lati-
tude, are called tesseral harmonics. The atmospheric drag
cllects a major contribution.
The dynamic equation of orbit,
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1. Barth Gravitational Model (by gravity potential l7)

: We have adapted the following two gravitational
model.

e NModel |2 Jonal harmonics terms only are in-
cluded.
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where
A 2 longitude of satellite position in ECEI frame
@ latitude of satellite position in BCET frame

2. Atmospheric Drag Model @ Ballistic Coellicient, /7,
is 0.01. The wodel of atmosphere is given by,

(1) = pocrp|—k(R — o) (5)
Vig=V —w. x I (6)
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po =136 2 107 kg /]
Itg = T278000.0(m]
k= 5381 x 107%[1/m]

3. Earth tracking station locations : For the tracking
of satellite, three tracking stations around the world
are assmued Lo take instantancous range, azimuth,

clevation, range rate data. ‘The satellite station lo-
cations in ISCEF [rame are;

station2(—4140926.694, T84183.444, —4487417.923)

stalion1(AR1819.913, —5507226.811,3170377.915)
stationA(~1353719.543, —5052262.074, 3637908 .977)

1. Epoch Ltime :

1 Jan 1990, 42300.0 (sec) since 0000 GMT

. The iuitial satellite orbital state vector in Inertial rel-

i

erence system : Nominal inertial orbital state vector
for the satellite at the epoch time are;

r = -5701600.0(n)
y = 2892300.0(m)
z = —2061500.0(m)
i = —=3590.0(1n /)
g = —-4024.0(m/s)

z

5771.0(m /)

6. Greenwich sidereal time at 1 JAN 1990, 0.0 (sec) :
175202 (rad)

-1

. Observation data of the satellite tracking : Required
data set in the trajectory Batch Ustimation are fol-

lowing ;

o Dala set @ number of tracking site, time of ob-
servation, aztmuth angle, elevation angle, range,
range vate.

o Nuniber of sets of observation, m : 181 sets

3 DBatch processor algorithm
The system governing equations are :

&= fla(l). ] (7)
The measurement vector equations are

() = ba() )+ e(f) (R)

where v(f) is observation error as a zero mean and normal
process with covariance matrix /?(1).

The sensitivity matrix, H of the measiurement vector
to changes in Lhe stale vector al epoch time, 1y is defined
as

_Ohla(1),1]
;= a1 1) )

where ®(t,1y) is state Lransition matrix and is calculated
in the following relationship,

Bt 10) = A)D(1, Lo) : D(tg. lo) = 1, (10)
where

The weight-least-squares estimate of the state may then
be found using the following process :

1. Select a batch data size, m for processing the dala
2. Read in m sets of observations (measurements), z{{;)

3. Propagate the stale from the epoch to cach observa-
tion time ¢;,

i = flr(1).1] (12)

with initial condition x(fp). Here we use MATLAB
to integrate systems ol ODEs.

(a) Calculate the predicted observations.

(ti) = hlx(t:), 1) {13)
(b) Calculate the sensitivities Ii[x(4;), 4.

{c) Calculate

311

m

L= Y nrrt (11)
=1
M = HIR'(:-2) (15)

Here K is an observation error covariance and
it should be nonsingular matrix.

4. Calculate #, the best estimate of the state, using
o= T+ MTRTHYHTRT (2 -2)  (16)
= ¥+ LM

where & is the previous best estimate of the stale at
epoch.

5. The vector # is the new best estimate of the staie
al epoch. Now go to step 3, using & as the new
initial condition and continue steps 3 - 5 until |# — 7|
converges to a predetermined tolerance.

4 Conditions and numerical re-
sults of cases

The error is delined as a dilference between prelimimary
calenlated orbit data and observation data of actual orbit.
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Simulation results show that typical valiues for the mean
error on measnring azimuth and clevation have shown 0.0602
0.0057(3.51-5 - 8.715-5 radians). We adapt SEP(Spherical
Frror Probable) as an error index. SEDP is an integral of
the trivariation (three-variable) Ganssian probability den-
sily funetion over a sphere, which is centered at the mean.

v

SEDP 2 [#3(1 — 7'4)-"]% (17)
\\'ll(‘l'(‘
ar o= el rrj 4 ol (18)
YD R B |
Vo= i’ﬁ‘_f_”l;" t o) (19)
/7‘1.

[. Clase T : The nominal initial state before batch esti-
malion

2. Case 1T 2 The initial state after bateh estuination us-
ing gravitational Model 1; Gravitational potential
model is Model 1, and only range data are included
in estimation process as ohservation data. TFor the
calenlation of A1) matrix. we use symbolic method
(Mathematica), the explicit differentiation of sym-
bolic equation flx(1),¢].

3. Case 11 : The initial state after batch estimation us-
ing symbolic method ; Gravitational potential model
is Model 2, and in estimation process only range data
are included as observation data. We use symbolic
miethod to caleulate A(1), the explicit differentiation
of symbolic equation f[r(1),1].

1. Case [V : The initial state after batch estimation us-
ing numerical method ; Gravitational polential model
is Model 2, and in estimation process only range data
are included as observation data. We use numerical
method to caleulate A(1), as the derivative values
of symbolic equation f[x(1), 1], nsing the following
equation.

arle(n.d] o, fle+ Dot = flat)
du B Aw

(20)

5. (ase V 1 The inilial state after batch estimation us-
ing Rlange, Azimuth, Elevation ; Gravitational po-
tential model is Model 2, and range,azimuth elevation
data are included in estimation process as observa-
tion data.  We use numerical method to calculate
AN, as the derivative values of symbolic equation
Jlx(1),1]. The observation ervor covariances, R of
range, azimuth, elevation are 0.01, 7.569¢-9, 7.369¢-
9.

6. Case VI @ The initial state aller batch estimation
using Range, Azimuth, Elevation ; Gravitational po-
tential modelis Model 2, and range,azimuth,clevation
data arc included in estimation process as observa-
tion data.  We use numerical method o calenfate
A1), as the derivative values of symbolic equation
FTe(D 1], Fhe observation error covariances, I of
range, azimmth, clevation are 0.01, 1.225¢-4%, 1.225¢-
9.

We show the numerical resulis on the table.

5 Conclusion

The accuracy of resulls using dynamic equation with the
zonal and tesseral harmonies of gravity potential and al-
mospherie drag is shown better than that of using dynamic
cquation only including the zonal harmonics and atmo-
spheric drag. This symbolic method take more processing
time. Using the same dynamic equation, the algorithm
ol the nmmerical method takes far less time, and keeps
the same accuracy as that of the symibolic method. With
range, azimuth, and clevalion as the observation data, the
accuracy is better than any other combination. With the
comparison of the accuracy of results and processing time,
it is better to nse the mmerical method with more pertur-
bation terms and range, azimuth, elevation as observation
data.
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The numerical results of cases

[_7 [ axis | error average | standard deviation | Sl‘?lq
case | x-axis | -8919.167533 9819.081307 | 1.2391e+4

V-axis

-T988.170847

6211.623286

7-axis

8438.421901.

8030.786532

case

X-axis

995. 176347

$356.567142

6.2699¢+3

v-axis HT.314835 1536.381091
z-axis | 1915.002479 4283.908935

| case 11T | x-axis | 1001.527339 3348.700200 | 6.1863¢+3
y-axis 551.83760:3 1417254886
7-axis | 1904.076653 4219.751612

case IV | x-axis | 1001.750893 3343.010790 | 6.1829¢+3
y-axis 516.333264 4420.097381
z-axis | 1916.515155 4245.982527

case V| x-axis | 1001141510 3341951488 | 6.1755¢+3
y-axis 543.026260 4111.048105
z-axis | 1913491628 4241.698761

case VI | x-axis 998.021971 3336.455511 | 6.1369e+3
y-axis 525.866260 1364.318261
z-axis | 1897.627479 4219717414
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The illustrative results of case VI
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