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Abstract In this paper, a self-lcarning fuzzy controller is
designed with a fuzzy approximation of an inverse model.
The aim of an identification is to find an input command
which is control of a system output. It is intuitional and
casy to use a classical adaptive inverse modeling method
for the identification, but it is difficult and complex to
implement it. 'his problem can be solved with a fuzzy
approximation of an inverse modeling. The fuzzy logic
cflectively represents the complex phenomena of the real
world. Also fuzzy system could be represented by the
neural network that is useful for a learning structure. The
rule of a fuzzy inverse model is maoditied by the gradient

descent method.

The goal is 1o be obtained that makes the design of

fuzzy controller fess complex. and then this self-learning
fuzzy controller can be used for nonlinear dynamic systen.
We have applicd this scheme to a nonlinear Ball and Beam

system.

1. INTRODUCTION

A fuzzy control is composed as fuzzification.
inference engine. rule base, and defuzzification. The fuzzy
controller has control of a plant with a fuzzy inference
logic. The inference rules expressing the input-output
relation of data are modified with a learning algorithm.

The gradient descent learning algorithm makes it
possible 1o train the neural network identifiers (Narendra
et ai., 1990) on-line to match unknown nonlinear
mappings. TFuzzy controller can be represented as
feedforward network model. On the basis of this point, a
gradient descent algorithm was developed in (Wang ¢t al.,
1992), to train the fuzzy controller to match input-output
data pairs. To use fuzzy system as approximation of an
inverse model for nonlinear dynamic system. we need to
know how to choose their parameters such that they

perform the desired nonlincar mapping. With respect to its

design parameters, the idea in the gradient descent learning
algorithm is to use the chain rule to determine the gradient
of the output errors of the fuzzy system.

For on-line learning fuzzy controller about unknown
nonlinear system, we use an inverse modeling technique.
That is, based on approach for the classical adaptive
control of liner and nonlinear systems with unknown
dynamics, proposed (Widrow ef «i., 1985). Unfortunately
adaptive inverse modeling technique is difficult and
complex to implement.

The fuzzy approximation of the inverse modeling is
easy to design and has a good performance. The fuzzy
system is capable of approximating any real continuous
function on a compact set to arbitrary accuracy (Wang,
1992).

2. FUZZY CONTROLLER

2.1 General Element of IFuzzy Controller

In this paper, we consider a fuzzy control system
(Lee, 1990a,b) whose general configuration is shown in
Fig. 1. There arc four basic clements in such a fuzzy
system: fuzzifier, fuzzy rule base, fuzzy rule inference
engine, and defuzzifier. We consider multi-input, single-

output fuzzy system: {/ < R" —» R. where [J is compact.

Fuzzy Controller
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Fig. |. General configuration of fuzzy control system.

2.1.1 Fuzzilier

The fuzzificr performs a mapping from the observed
crisp input space [/ < R" to the fuzzy set defined in [/,
where a fuzzy set(Zadeh, 1965) defined in [ is

— 243 —



cliavueterized by a membership function U= 0]

and is labeled by a linguistic term 7,

2.1.2 Fuszy Rule Base

The fuzzy rule base consists of a set of linguistic rule
in the form of “1I7 a set of conditions is satisficd, THEN a
el of consequences is inferred.” We consider the case
where the fuzzy rule base consists of m rules and »

variahles in the tollowing form:

Rule : 1F v is o) and x, 05 1) and ---and x_is A4,

THEN zis B/

2.1.3 Fuzzy Inference Engine

‘The {uzzy inference engine is decision-making logic
that employs fuzzy rules from the fuzzy rule base to
determine a mapping from the [uzzy sets in the input space

{7 to the fuzzy sct in the output space R.

2.1.4 Defuzzifier
The detuzzifier performs a mapping from the fuzzy

sels in R to crisp point in R.

2.2 Fuzzy Controller

For simplicity, we assume the fuzzy controller
under consideration has (wo input vanabies and one
output. Each input variable has two fuzzy scts defined by
membership function in its universe of discourse and four
tuzzy rules are made from. If this fuzzy system uses
product-inference  fogic and singleton  deluzzifier  for
output variable. it can be described by a network model in
Fig.2 (Seo, E.T. 1994).

Fig 2. Fuzzy controller as a feedforward network model.
The output of this fuzzy controller is

f(x)= D,y (h

kxl

where

P, o= (2)

and
¢ (x) = 14 (x) - b (x,),
0,(X) = ,(x)) - 13 (x,).
Oy(x) = i) - ph (),
O, =11} (x,) 113 (x,).

If we choose the parameters of (1) for a certain
purpose. this fuzzy controller behaves properly as a filter,
i.c., well-defined fuzzy controller is realizable. If all
paramcters determining the membership functions of input
variables are fixed in (1). the only remaining design
paramelers are y, and the fuzzy controller is linear for
these parameters. By adapting this point of view. we are
able to use some very efficient lincar parameter estimation
mcthods, e.g.. gradient descent method. and least square

mcthod, cte.

3. ADAPTIVE INVERSE MODELING

3.1 Adaptive Inverse Modeling
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Fig. 3. Adaptive inverse model control system.

An unknown plant can be made to track an input
command signal when this signal is applied to a controller
whose transfer function approximates the inverse of its
transfer function. The output becomes a driving signal of
the plant. In the adaptive inverse control method. the
paramelers of the controller are obtained by an adaptive
inversc  modeling  process applied to  the plant.
Consequently, after the adaptation phase, the plant output
will track the reference command signal.

¥(k)

w Er(k=A) 4)

plant oy Bput commmand

Since the adaptive inverse control system is obtained
from the cascade of the adaptation phase, Fig. 3 shows the

plant and the inverse model. This method is produced an
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inverse model of an unknown plant. Consequently, that is
effected  a equalization or a deconvolution by inverse

model.

4. GRADIENT DESCENT LEARNING fora
FUZZY APPROXIMATION of INVERSE
MODELELING

4.1 Gradient Descent Learing

In Iig. 3. we have defined an approximation error;
¢ =[u(k = A)-atk)] (5

In gradient descent algorithm( Widrow et al.. 1985 ), we
would estimate the gradient of MSE = E[e: = C’z' At each

iteration in the adaptive process, we have a gradient

estimate of the form

s 9e o
v, =a‘—‘{= 2, 5‘% (©)

where ww is the weight of (k) and 4 is the state of a
adaptive process system. With this simple estimate of the
gradient. we can specify a steepest descent type algorithm
as follows

Wi =W, ‘P\:]L 0

p is the gain constant that regulates the speed and stability

of adaptation.

4.2 Fuzzy Approximation of Inverse Modeling
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Fig. 4. Self-learning fuzzy controller with fuzzy inverse model.

The fuzzy controller with the fuzzy approximation of

iverse model is obtained by incorporating the gradient
descent learning system. The inputs are the reference
signal (k) and its change Ar(k) for the fuzzy controller,

and plant output p(k) and its variation Ap(k) for the

inverse model(Fig. 4). where

Ar(k)y=r(k)y-r(k-1) ®
Ax(k)= v(k)=y(k -1
At each time step, the error is modified through

gradient descent method with(S):

e =[ulk - &) -iitk)] )

The weights of the fuzzy inverse model are copied
for the fuzzy controller. To minimize the error ¢(k), the

weights corresponding to the rules activated for the inverse
model will be adjusted. In the meantime the weights
corresponding to fuzzy controller will remain unchanged.
After the adjusting time, the weight of rules of inverse

model is copied to the fuzzy controller.

» k)plmu P rk - A)ﬁmy controller inprt (1)

5. CONTROL of a BALL and BEAM SYSTEM

5.1 Ball and Beam System

beam

Fig. 5. The Ball and Beam system.

We use the gradient descent method to approximate
the fuzzy inverse model for nonlinear ball and beam
system. Assuming that dynamics of plant are unknown, we
have implemented the tuzzy controller with an IBM
compatible PC. The ball and beam system is shown in Fig.
S. The beam is made to rotate in a vertical plane by
applying a torque at the center of rotation and the ball is
free to roll along the beam.

From ( Seo, Y. R. 1994 ), the system is represented

following nonlinear cquations.

1.69571646 — 16.61802072x sin 8+ 0.001 5918197
~0.0002133030xx ~ 0.001045 188x cos 0+ 0.000194043sin 8
+0.0000077846"x ~ 0.00007628-4x sin 0 (1

¥ o= e U

(0.001 18825+ 0.00264726x")
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0.03951 141 -0.0052945276xx - 00259431 85xcos O
G- +0.0048160445in 0 + 0.0001932136x — 0.001893489.x 5in § (12)

(0,001 18825+ 0.0026472617)
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Fig. 6. Error of ball (initial position: 0.095m, goal: 0.0m)
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Fig. 8. Error of bail (initial position: 0.095m, goal: 0.0m)

0. CONCLUSIONS and FUTURE WORK

The validity of the self-learning fuzzy controller with
a fuzzy approximation of the inverse modeling can be
evaluated through the computer simulation of the plant. In
Fig. 6. and Fig. 7. we can obtain the results of simulation
which are insufficient learning states. But Iig. 8 shows a
good learning state with small steady-state crror, the
position of ball is almost up to the goal which is point
7Lro,

Using the fuzzy inverse modeling and gradient
descent method instead of a complex classical method, we
can get the goal that makes the design of selt-learning

fuzzy controtler less complex.,

And the fuzzy controller is able to learn proper action for
unknown nonlinear system control. Now, we have
implemented the fuzzy controfler( “The Balance Boy”™ )
with a 386PC, an interface board, a 1)/A converter, a
PWM motor drive-circuit, a counter, and a  sensing-
circuit for ball position.

For better performance of learning. the fast
convergence learning method or the hybrid learing
method will be necded. The hybrid tearning method which
is composed as the feast mean square error method and the

gradient descent method.
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Abstract

To increase the robustness ol the feedforward
tracking control system, a new discrete time slid-
ing function has heen defined and utilized for the
formulation of control law. In adaptive case the
robustness is achieved by using both a normal-
ized gradient algorithin with deadzone and a s-
liding function-based nonlinear feedback, while in
nonadaptive case by using only a sliding function
-based nonlinear feedback.

1 Introduction

When the desired position is time varying,the tracking
performance can be significantly imiproved by the feedfor-
ward tracking controller. For minimum phase systems the
feedforward tracking controller can be designed to achieve
perfect tracking based on stable pole-zero cancellation.

In fact the model/plant mismatches eventually lead
to an imperfect pole-zero cancellation, which in turn nay
significantly degrade the tracking performance and even
result in Lhe instabilities of the overall system. Mismatch
in pole-zero cancellation canses the motivation of using
Diophantine equation {or constructing sliding [nnction.

In analyzing these uncertainties we adopt the follow-
ing two casesi.c,nonadaptive and adaptive. In nonadap-
“tive case we constriuct the nonlinear feedback control faw

which is based on discrete time sliding function. In adap-

tive case Lthese uncertainties may canse the divergence of

the adaptive process, which has heen resulted in the intro-
duction of deadzone in the estimator to bring the robust
results in the adaplive control system(Fgardl 1978, San-
son 1983 loannou and Kokotovic 1983, Kretsschneier
and Anderson 198G ),

Deadzone and sliding boundary layer is intended to
provide robustness in control system against modeling er-
rors. Tu this paper we try that their design concept be set
np on the same basis, and try to match some refationship
between them.

2 Robust Discrete Time Tracking
Control

The controlled plant is assumed tn be represented by the
following discrete time modcl:

24 BY

vk = S gy ) ) M

where

o u(k) and y(k) are the measurable input and output
respectively,

e 7)(k) represents the modeling error,

e A(z7") and B(27") are polynomials of order n and

m respectively in the backward shift operator z 7'

The order n and m as well as the delay step d are
assumed to be known. It is further assumed that
Al : A(z7Y) and B(27') are coprime.

A2 | n(k) | < n m(k), where p is a posilive scalar and
(k) is defined by
mk) =omk - 1) Ffulk -] Flutk — DL (2)

with 0 ~ g - |.

Ad ol = py, where OF = Jay. -0 ag by, oL byl

and p, is a known positive scalar,

The plant (1) can also be expressed as
y(k) = 00 do(k) 1 (k) &)
where

STk~ Loylk - 1) yk — )tk - d).

cooulk o d - ).
mik) = Az k).

Then it follows fromn A2

() | | AG k) 1 i (k) )

A and (2) that
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Tu this paper we propose a robust discrete time track-
ing control hy combining pole/zero cancellation and dis-
crete time version of sliding control. For assignmnent of
closed Hoap poles and setting the structure of the control

systent we ntilize the following Diophantine cquation.

D AEHS G Y R (i

where
From eguations (6) and (1), the following equation is

derived,

Dz k) 00 dalk ) 1 m(k) (")
Sz ) and Dy(z

order n-t.-1 and n respectively o the backward shift
{

where Ry(z ') ) are polynomials of

operalor

“j N O P P T I e {8)
drlk) = k) ulk - D)o ulk = d ot D).
Wk)outk - Deeeg(k = DL (9)

and (k) is expressed as follows

mik) = 0 dy(k) (10)
To derive the bounds of | 07 da(k d) Tand [ (k) | it
is necessary to have the following assnmption.
A0 2 pa. where O = fsio sy oo ]
and pa is a known positive scalar.

Proposition 1 JO5 dalk  dY ] = Ko o' 7 Tin(k),

where v - max deg(none |od).

I =

Gt Dy 1 Ot DG Dpipg | onpa

It follows with assimption Ad that

() | TAG Y Sz D) k) | < gon(k) (1)

with

ve b 3ppen(d oy Y (12)
tn designing a robust discrete Lime Lracking controller

(k) by

we define s

sthy - Dy Dytk) -y (K (1)

and add a control loop with s(k) to compensate the
madeling error (k). Ontside the bonndary layer (] s(k) |
dr 3 as well as inside the boundary laver (| s(k) [~ @)

the control law becomes
\ ‘ \ - / i . a(k)
(k) ‘ [sCRY VT (2" Dymtk 1 d) -0y da(k) K sal & |
n

(1)

where

feib) ]l o
sl f s ) for
Tl e

s(k).
P s(ky - P
b, fors(k) = &

and O, and (k) ace defined by

ny tho- 03 (16)
ol k) = k). <l)2r(k)l (v

Proposition 2 lor arbitrary dy >~ 0 there crists a
o > 0 (which depends on dy) such that for all 0 <

17 e and webilvasy dadtial conditions, it fellows that
| a(k) 1< dy m(k)

where dy = .

Proposition 3 m(k]is bounded, in G u(k) and y(k)
arc hounded.

The condition that ¢ and K satisfy will be explained

in theorem 1,

Notice that from Isgs (13) and (1), s(k) satisfes
. . et I FUY
s(k t d) =s(k) 1okt d) KN :-'nt1 S f (1R}

The robust stability of the robust discrete time track-
ing control systent is proved in the following theorem.
Theorem 1 Robust Stability of the Robust Discrcte
Time Tracking Control System

The robust diserele titne hracking contvol system,
congigling of the plant (1) and the control law (1.1}, 1s
stable in the aense thal | s(k) | deercases when | s(k) |
@ and that the steady stale value of s 1s bounded
l'}.l; g

Prool: Introduce the following discrete fiyapunov fune-

tion candidate

VIk) ] s(R) | (19)

which ean be interpreted as the distance to the surface
s{k) 0.
Then we can formulate the followig difference equa-

tion.

AV | d) Vik 1 d) Vi(k)
RUEROIENGY
| s(k) 4 pdk 1 d)

[ s(k) |

K sgnjs(e)) |
(20)

Based on the Proposition 3 1ot ns assume that the
npperbound of modeling evror is constant. i.c.
Pap(R) |7 vapngk) = 1y (21)

where I is a bounded ccatar. 'Then the folowing a couple

of condition on IS make (20) negative.

Ko~ 1o K- 2] s(k) ] 1 (29)

If K is selected as following

IN ot
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Then (19) will be a Lyapunov function in the following
region.

sith) |~ T 1) (24)

Tnside the boundary layer, the s-dynamics become

stk td) == (1 - l;;)s(k) bk + d) (25)

The boundary layer thickness & can be selected such that
(25) shows characteristics of a first-order filler with input
(k4 d) and eigenvalue,

N

by (26)
I'rom (23) and (26):
Fat g -
P - _ 2
P N (27)

From the stability viewpoint the following relation shonld
be satisfied.
K

R (29)

For a stable eigenvalie X the steady state solution be-
COmes:

llmiq,(k) Inn L N ok - d) 29

J =
From (29) the following relations are derived.
| lim s(k) | - (VI AP e 1 (30)
1 K
e L s st 3t
EIPYRRRENPY o
| ‘!im s(k)| - & (32)

I,!im‘ a(k)| <

3  Robust Adaptive Discrete Time
Tracking Control

To maintain the control objective for a plant with un-
kuown dynamics due to modeling error in real time, pa-
rameter adaptation schenies conpled with the control law
needs to be investigated. A standard approach to incor-
porate the adaptation scheme with the control law in sta-
bility analysis is to guarantee that a norm of the difference
between estimated parameters and actual paramecters de-
creases at each step. Deadzone concept has been utilized
in most robust. adaptive schemes. In this paper we apply
normalized gradient parameter estimator as our adapta-
tion scheme,

The algorithun is given hy:

k)t~ DDA
di(k - dyda(k - d) b e

< d, 0 < alk) < 2, ¢ > Opnd D(c(k). d(k)) is

the continuons function defined by

{((k) Sd(k)sgnie(k)}.

fy(k) = Oy(k — 1)

where k

il | e(k) | d(k).

otherwise.

(34)

D(c(k). d(k)) -

and :

e(k) = O0Tdu(k -
SRACE

65k~ Dok )
d) + (k) (35)
Proposition 4 The estimation algorithin defined by

(33) -- (35),when applicd to plant (7),has the following
properties:

d) +oplk) —-
Dalk

Jim H0,(k) — (k- D)f| = 0 (36)
k]i_[lll)(e(k).(i(k)) = 0 (37)

In the notation of this section the control law (14)
becomes:

k) = ) DG Dy 1) rr—égf'«ﬁz(k)+r<mq'i%"‘l}|

c‘n _—

(38)
A reasonable criteria to use in shifting from the non-
adaptive to adaptive controller is whether s is inside or
omtside the boundary layer. That is, when inside the
boundary layer, the control law of (38) is used and adap-
tation does not occur. The control laws should be contin-
nous at the boundary layer edge. For this purpose, note
that the non-adaptive control law of (38) takes on the
following value at the boundary layer edge.

(k) = {)'(-)lrn(z-')ym(k Fd) - 0, do(k) | Asgn{a(k)}(39)

The control law of (39) rednces to :

~ AP sgn{s(k)} F»nu(k) 1l sz(},z(k)
()} + fada(k)  (40)

I)l(zr x)‘”m(k’ 5 d) =

= AP sgn{s

Recalling (7) :
Dy(z DYulk +d) = Oada(k) t mik +d) “n

From (40) and {41} the s-dynamics becomes :

{s5(k)} 4 Oada(k) ok +d) (42)
Combining (42) and estimation algorithm yields :

[s(k) - d(k)sgnic(h)}]*

s(k +d) = AP sgn

APsgni s(k - d)}

A Sl Dk~ T e = 0043)

e(k) = s(k) ~ A sgnis(k - d)} (1)
Now sclect d(k) as :

d(k) = (1~ NP (45)

From (27) , this guarantees that d(k) >~ I'; as required.

T'he condition on adaptation remains as | e(k) |~ d(k}).
which fram (14) and (45) is met if | s(k) |~ @ ( being out.-
side the boundary fayer ).
from (14) it can be seen that sgn{c(k)}
so using (45), (43) becomes :

lin !K(k) “)“ (k - l,‘ 12 -
koo ) (k- (1)(1) (k = (i) Lo

Wilh this coudition satisfied,
- sgn{s(k)}, and

0 (46)
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Note that condition (1) of Key Technical Lemma|Goodwin
and Sin 1981) is satisfied, with p(k) = s(k)-- ® sgn{s(k)},
Bty oo ho(k) = Loand a(k) - da(k -

bi(ky and by(k) also satisfies condition (2). To show that

d). This choice of

condition (3) of the lenmima is salisfied, it is necessary that
[s(k) - d(k)sgn{s(k ) }] lincarly bounds ¢(k - d). This
can be done by first showing that y(k) linearly bounds
Ak d). Notice that ¢k
of the ontput y(i), k - n 1 1 <1 <k and of the control
input u(i)k - - d 1 <1 < k. Siace the parameter

d) is made np of fictions

estimales remain bonnded dne Lo the bonndedness prop-
erties of the parameter estimator, y(i) and u(i) are also
bounded as i was demaonstrated by Proposition 3. To
demonstrate that fs(k) - ®sgnis(k
s y(k), recall that the selection of function s(k) in Section

) H linecarly bonnd-

2 established the ability to sct the dynamics on the slid-
ing surface as desired. Since s(k) is bounded and ya(k)
is assumed to be bounded, g(k) can linearly bound y(k).
Sa [s(k) @ sgnis(k - Jd)} lincarly bounds y(k). With
all conditions ol the Key Techuical Lemma satisfied, this
altows for the resnlts that ¢(k - d} is bounded for all k
and that

’lim[s(k) @ sgn {s(k - d)}] - 0.
O

The results thus proved is summarized in the following
theorem.

Theorem 2 Robust Stability of the Robust Adaplive
Discrete ‘Tine Tracking Control System :

The robust adaplive discrele time bracking con-
trol sysiem, consisling of the plant (1)U controller
(38),and the aduptive law (33) — (35) satisfying (45),
is slable in the sense that | s(k) | deereases when
L slk) [~
bounded by .

@ and that the steady state value of s is

Both in adaptive and in nonadaptive case we have ar-
rived at the robust same results,

4 Conclusion

Based on the Diophantine equation a new discrete time s-
iiding function has been defined and utilized for the robnst
feedforward tracking control law. The sliding boundary
laver is comnposed of eigenvalue in s-dynamics and of np-
perbound in modeling error. The modeling error which
ultimately allects on the tracking performance is diluted
in the sliding bonndary layer, which results in increase of
robustiness. Parameter estimator with a new deadzone is
proposed to robustly estimate the unkuown parameters of
plant. Uising cigenvalue as an intermediate variable,the re-
lationship between deadzone and sliding boundary layer is
derived to provide compatibility in robnst control param-
eters. In adaptive case the robusiness is achieved by us-
ing both a normalized gradient algorithin with deadzone
and a sliding function-based noalinear feedback, while in
nonadaptive case by using only a sliding fonction -based
sonlinear feedback.
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